Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Интерференция света в тонких пленках. Просветление оптики





Пусть на плоскопараллельную прозрачную пленку (пластинку) с показателем преломления n и толщиной d под углом a падает плоская монохроматическая волна (для простоты рассмотрим один луч). На поверхности пленки в точке А волна частично отражается (луч 1’) и частично преломляется (луч АВ). В точке В волна также частично отражается (луч ВС) и частично преломляется (луч 2’). То же самое происходит в точке С. Причем преломленная волна (луч 1”) накладывается на волну непосредственно отраженную от верхней поверхности (луч 1’). Эти две волны когерентны, если оптическая разность хода меньше длины когерентности lког, и в этом случае они интерферируют.

Оптическая разность хода двух волн D=(AB+BC)n-(AD-l/2),

где l/2 – потеря полуволны при отражении луча 1’ в точке А. Используя закон преломления n1sina = n2sing и учитывая, что в рассматриваемом случае n1=1, n2=n, можно показать, что . (17)

В точке наблюдения на экране будет максимум, если D=ml и минимум, если D = (2m+1)l/2 [см.(15), (16)].

Возможность уменьшения вредного отражения света вследствие интерференции в тонких пленках широко используется в современных оптических приборах. Для этого на передние поверхности линз, призм наносят тонкие пленки с показателем преломления n= и толщиной d, которая определяется из условия минимума при интерференции волн, отраженных от границ раздела сред с n1и n и n и n2 D=2dn=(2m+1)l/2, m=0,1,2… (18)

Минимальная толщина пленки соответствует m = 0

d=l/(4n).

Такая оптика получила название просветленной оптики.

Интерферометры и их применение

Явление интерференции света используется в ряде весьма точных измерительных приборов, получивших название интерферометров. Интерферометры используют для точного (порядка 10-7 м) измерения длины тел, длины волны света, показателей преломления, для контроля чистоты обработки поверхности и др.



 


Лекции 4,5 Дифракция света

Это явление отклонения света от прямолинейного распространения, когда свет, огибая препятствия, заходит в область геометрической тени.

В общем случае дифракцию понимают как нарушение законов геометрической оптики, сопровождаемое интерференционными явлениями.

Природа и основные принципы дифракции могут быть установлены с помощью принципа Гюйгенса-Френеля.

Принцип Гюйгенса-Френеля

В 1678 г. Гюйгенс сформулировал правило, называемое принципом Гюйгенса: каждая точка, до которой доходит волна, является источником (центром) одной из вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. (Напомним, что волновым фронтом называется геометрическое место точек, до которых доходят колебания к моменту времени t).

Пусть Ф(t) – фронт волны в момент времени t (см. рис. 1). Тогда, согласно принципу Гюйгенса, фронт волны в момент времени t+Dt совпадает с поверхностью огибающей всех вторичных волн. Основная слабость принципа Гюйгенса в том, что он не учитывает явления интерференции вторичных волн и, следовательно, не позволяет рассчитывать амплитуды волн, распространяющихся в различных направлениях.

Этот недостаток был устранен Френелем, который в 1815 г. дополнил принцип Гюйгенса, введя представление о когерентности вторичных волн и интерференции их между собой.

Дополненный Френелем принцип Гюйгенса называется принципом Гюйгенса-Френеля.

Метод зон Френеля

Расчет интерференции вторичных волн сводится к интегрированию, которое часто бывает затруднительным. Для упрощения вычислений при определении амплитуды волны в заданной точке пространства Френель предложил разбивать поверхность фронта волны на зоны (зоны Френеля) так, что волны от соседних зон приходят в точку наблюдения в противофазе и, вычитаясь, ослабляют друг друга.

Применим метод зон Френеля для расчета дифракции света.

Различают два случая дифракции света:

1. Дифракция Френеля или дифракция в сходящихся лучах, когда на препятствие падает плоская или сферическая волна, и дифракционная картина наблюдается на экране, находящемся на конечном расстоянии от него (см. 4.3).

2. Дифракция Фраунгофера или дифракция в параллельных лучах, когда на препятствие падает плоская волна, и дифракционная картина наблюдается на экране, который находится в фокальной плоскости собирающей линзы, установленной на пути прошедшего через препятствие света (см. 4.4).









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.