Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Тема 1. Предмет, метод и задачи статистики





КОНСПЕКТ ЛЕКЦИЙ

по дисциплине

«СТАТИСТИКА»

для студентов экономических специальностей

Форма обучения заочная

Тула 2013

Рассмотрено на заседании кафедры «Экономика и управление» факультета Экономики и менеджмента

протокол № __1__ от "_05_" _сентября_ 2013 г.

Зав. кафедрой _______________ Л.А. Васин


Содержание

 

Введение ......................................................................................................... Тема 1. Предмет, метод и задачи статистики ......................................... Тема 2. Статистическое измерение и наблюдение социально-экономических явлений ........................................... Тема 3. Статистические группировки ..................................................... 3.1. Группировка статистической информации ................................... 3.2. Ряд распределения ........................................................................... 3.3. Вторичные группировки ................................................................. 3.4. Графическое представление ряда распределения ......................... Тема 4. Абсолютные и относительные статистические показатели .. Тема 5. Средние величины ......................................................................... 5.1. Понятие и виды средних величин .................................................. 5.2. Использование метода моментов для определения средней величины .......................................................................................... 5.3. Структурные средние величины (мода и медиана) ...................... Тема 6. Вариационный анализ .................................................................. 6.1. Показатели вариации и способы их расчета ................................. 6.2. Виды дисперсий. Правило сложения дисперсий .......................... Тема 7. Анализ рядов динамики ………………………………………... 7.1. Понятие и виды ряда динамики. Основные показатели динамики и способы их расчета ..................................................... 7.2. Определение основной тенденции развития ряда динамики ...... 7.3. Изучение сезонных колебаний ....................................................... Тема 8. Индексный метод анализа ……….………………...........…….. 8.1. Понятие и виды индексов ............................................................... 8.2. Средний арифметический и средний гармонический индексы .. 8.3. Индексы средних показателей ........................................................ Тема 9. Метод выборочного наблюдения ……………….…………….. Тема 10. Корреляционно-регрессионный анализ ……….............…… 10.1. Виды связи и их особенности. Задачи корреляционно-регрессионного анализа ................................................................ 10.2. Парная регрессия. Оценка тесноты корреляционной связи ...... 10.3. Множественная регрессия ............................................................        

Введение



 

Дисциплина «Статистика» является базовой отраслью статистической науки. Изучение различных статистических показателей и методов, умение применять их на практике выступает обязательным условием подготовки специалистов в области экономического управления. Целью статистики является исследование количественных сторон массовых явлений и процессов в неразрывной связи с их качественной стороной, количественное выражение закономерностей общественного развития в конкретных условиях места и времени. Сбор и статистическая обработка информации позволяет рассчитать различные стоимостные оценки промышленной продукции, провести статистический анализ выполнения плана, динамики и структуры различных производственных и экономических показателей финансово-хозяйственной деятельности предприятия, таких, например, как доход, себестоимость, прибыль, рентабельность, производительность и т.д. Для более полного усвоения материала дисциплины предлагается использовать следующую литературу:

1. Теория статистики: Учебник / Р.А. Шмойлова, В.Г. Минашкин, Н.А. Садовникова, Е.Б. Шувалова; Под ред. Р.А. Шмойловой. − 4-е изд. перераб. и доп. − М.: Финансы и статистика, 2006. − 656 с.

2. Общая теория статистики / Под ред. О.Э. Башиной ,А.А. Спирина. – М.: Финансы и статистика, 2005. − 440 с.

3. Статистика: Учебник / И.И. Елисеева, И.И. Егорова и др.; Под ред. проф. И.И. Елисеевой. − М.: ТК Велби, Изд-во Проспект, 2004. − 448 с.

4. Практикум по теории статистики: Учеб. пособие / Р.А. Шмойлова, В.Г. Минашкин, Н.А. Садовникова; Под ред. Р.А. Шмойловой. − 2-е изд., перераб. и доп. − М.: Финансы и статистика, 2004. − 416 с.

5. Общая теория статистики: Учебник / Под ред. М.Р. Ефимовой. – М.: ИНФРА-М, 2001. − 279 с.

6. Теория статистики: Учебник / Под ред. проф. Г.Л. Громыко. − М.: ИНФРА-М, 2000. − 414 с.


Тема 2. Статистическое измерение и наблюдение

Решение.

Длина каждого интервала ряда распределения составит:

млрд.руб.

Интервальный ряд распределения имеет вид:

Группы предприятий по среднегодовой стоимости основных средств, млрд.руб. Число предприятий Удельный вес предприятий, %
1 - 2,2 12,5
2,2 - 3,4 37,5
3,4 - 4,6 20,8
4,6 - 5,8 12,5
5,8 - 7 16,7
 

Дискретный ряд распределения имеет вид:

Группы предприятий по среднегодовой стоимости основных средств, млрд.руб. Число предприятий Удельный вес предприятий, %
4,3
8,3
2,7 16,7
3,1 12,5
3,3 8,3
3,5 12,5
4,5 8,3
5,6 12,5
6,5 8,3
8,3
 

3.3. В случае если построенный ранее ряд распределения (группировка) по каким-либо причинам не удовлетворяет требованиям, предъявляемым к его анализу, то ряд необходимо перегруппировать или осуществить вторичную группировку. Вторичной группировкой называется ряд распределения, полученный из исходного, путем его перегруппировки. Перегруппировку можно провести двумя способами: перегруппировка по интервалу; перегруппировка по удельным весам.

Пример 3.2. Перегруппируйте следующий ряд распределения, образовав три группы с интервалами: до 8; 8 - 20; свыше 20:

Группы предприятий по стоимости основных средств, млрд.руб. Число предприятий
до 1 1 - 3 3 - 6 6 - 12 12 - 22 свыше 22

Решение.

Для иллюстрации метода вторичной группировки представим статистическую информацию на схеме:

В методе вторичной группировки предполагается, что элементы в каждом интервале распределены равномерно. Тогда возможно проведение расчетов, представленных в третьем столбце таблицы. Новый ряд распределения, полученный в результате перегруппировки исходного ряда распределения, приведен в первом и втором столбцах таблицы:

Группы предприятий по стоимости основных средств, млрд.руб. Число предприятий Расчеты
до 8
8 - 20
свыше 20

3.4. Для статистического исследования ряда распределения часто прибегают к его графическому представлению в виде полигона или гистограммы.

Полигон − это график, в котором ряд распределения представлен в виде линейной диаграммы (ломанной линии). Обычно полигон строится для дискретного ряда распределения, т.е. ряда, у которого группировочный признак представлен конкретными числами.

Для построения полигона на плоскости вычерчивается декартова система координат, по оси абсцисс которой откладываются значения группировочного признака, а по оси ординат − частота или частость. Затем для каждого значения группировочного признака на уровне соответствующей частоты (частости) на плоскость наносятся точки. Соединив точки отрезками, получается ломаная линия. Такой график называется полигоном ряда распределения.

Пример 3.3. Построить график ряда распределения по следующим данным:

Разряд рабочего цеха Количество рабочих

Решение.

Полигон дискретного ряда распределения представлен на графике:

Полигон может быть построен и для интервального ряда распределения, т.е. ряда, у которого группировочный признак задан в виде интервалов. В этом случае по оси абсцисс откладываются средние значения каждого интервала.

Гистограмма − это график, в котором ряд распределения представлен в виде смежных столбцов. Гистограмма обычно используется для графического представления интервального ряда распределения.

Для построения гистограммы на плоскости вычерчивается декартова система координат, по оси абсцисс которой откладываются нижняя и верхняя границы каждого интервала, а по оси ординат − частота или частость. Затем для каждого интервала на уровне соответствующей частоты (частости) на плоскости проводятся горизонтальные отрезки. Опустив из концов отрезков на ось абсцисс перпендикуляры, получаются смежные столбцы. Такой график называется гистограммой ряда распределения.

Пример 3.4. Построить график ряда распределения по следующим данным:

Группы предприятий по среднегодовой стоимости основных средств, млрд.руб. Число предприятий Накопленная частота
1 - 2,2
2,2 - 3,4
3,4 - 4,6
4,6 - 5,8
5,8 - 7

Решение.

Гистограмма интервального ряда распределения представлена на графике:

При построении гистограммы для ряда распределения с интервалами неравной длины по оси ординат откладываются значения плотности распределения интервала. Плотность распределения интервала представляет собой отношение частоты (частости) к длине соответствующего интервала:

,

где - частота (частость) интервала;

- длина интервала.

Пример 3.5. Построить график ряда распределения по следующим данным:

Группы предприятий по среднегодовой стоимости основных средств, млрд.руб. Число предприятий Плотность распределения
1 - 3 3 - 3,4 3,4 - 4 4 - 6 6 - 7 3,5 12,5 2,5

Решение.

Гистограмма интервального ряда распределения с интервалами неравной длины представлена на графике:

Для графического изображения ряда распределения часто используется кумулятивная кривая распределения. Кумулятивная кривая распределения (кумулята) представляет собой возрастающую ломаную линию. Для построении кумулятивной кривой распределения на плоскости вычерчивается декартова система координат, по оси абсцисс которой откладываются для дискретного ряда распределения значения группировочного признака, а для интервального ряда распределения нижняя и верхняя границы каждого интервала группировки. По оси ординат наносится накопленная частота (частость), представляющая собой суммарное значение частот (частостей) текущего дискретного значения (интервала) группировки и всех предшествующих. Затем для каждого дискретного значения группировочного признака (верхней границы интервала) на уровне соответствующей накопленной частоты (частости) на плоскость наносятся точки. При построении кумуляты интервального ряда распределения выставляется еще одна точка для нижней границы первого интервала на уровне нуля. Соединив точки отрезками, получается ломаная линия. Такой график называется кумулятивной кривой распределения.

Пример 3.6. Построить кумулятивную кривую распределения по данным из примера 3.4.

Решение.

Кумулятивная кривая интервального ряда распределения представлена на графике:

Кумулятивная кривая характеризует равномерность распределения изучаемого признака по интервалам. При равномерном распределении изучаемого признака по интервалам график кумулятивной кривой распределении будет представлен возрастающей прямой.

Таким образом, чем сильнее график кумулятивной кривой распределения отличается от прямой, соединяющей точки соответствующие нижней границе первого интервала и верхней границе последнего интервала, тем менее равномерно значения признака распределены по интервалам.

Тема 5. Средние величины

5.1. Понятие и виды средних величин

5.2. Использование метода моментов для определения средней величины

5.3. Структурные средние величины (мода и медиана)

5.1. Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, является средняя величина. Средней величиной называется значение признака, наиболее характерное для изучаемой совокупности.

Важным свойством средней величины является ее способность отражать то общее, что присуще всем единицам исследуемой совокупности. Значение признака в совокупности изменяется под действием множества разнообразных факторов, среди которых могут быть как основные, так и случайные. Сущность средней заключается в том, что в ней погашаются отклонения значений признака, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием основных факторов. Это позволяет средней величине отражать типичное значение признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам совокупности. Объективность и типичность средней величины обеспечивается при следующих условиях:

1) средняя величина должна рассчитываться по массовым данным;

2) средняя величина должна рассчитываться для качественно однородной совокупности, т.е. расчет средней должен сочетаться с методом группировок.

В экономических исследованиях и расчетах применяют две категории средних величин:

1) степенные средние (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая);

2) структурные средние (мода и медиана).

Степенные средние могут быть простыми и взвешенными.

Основные расчетные формулы степенных средних величин представлены в табл. 5.1.

Таблица 5.1

Основные расчетные формулы степенных средних

Средняя Простая Взвешенная Условные обозначения
Степенная - средняя величина изучаемого признака; - i-тое значение изучаемого признака; n - число различных значений изучаемого признака; - частота (вес) i-го значения изучаемого признака.
1. Арифметическая
2. Гармоническая
3. Геометрическая
4. Квадратическая

Использование средней арифметической простой и взвешенной и средней гармонической простой и взвешенной рассмотрим на следующих примерах.

Пример 5.1. Имеются данные о выработке шести рабочих цеха за смену.

Табельный номер рабочего Выработка, шт./час

Необходимо определить среднюю выработку рабочего.

Решение.

Средняя выработка рабочего рассчитается как:

шт./час.

Обозначим через: - выработку i-го рабочего; - количество рабочих в цехе; - среднюю выработку рабочего. Тогда в общем виде формулу для определения средней выработки можно записать:

.

Данная формула получила название средней арифметической простой.

Пример 5.2. По сгруппированным данным примера 5.1 определить среднюю выработку рабочего.

Решение.

Сгруппируем данные представленные в таблице примера 5.1. Получим дискретный ряд распределения вида:

Выработка, шт./час Количество рабочих

Среднюю выработку рабочего рассчитаем как:

шт./час.

Обозначим через: - выработку i-ой группы рабочих; - количество выделенных групп рабочих по выработке; - количество рабочих, относящихся к i-той группе по выработке; - среднюю выработку рабочего. Тогда в общем виде формулу для определения средней выработки можно записать:

.

Данная формула получила название средней арифметической взвешенной, а называется частотой (весом) признака.

Пример 5.3. На основе данных, представленных в таблице примера 5.1, определить средние затраты времени, необходимые для изготовления одной детали (среднюю трудоемкость).

Решение.

Затраты времени, необходимые для изготовления одной детали, являются величиной обратно пропорциональной выработке, т.е.:

.

Определим трудоемкость каждого рабочего цеха:

Табельный номер рабочего Выработка, шт./час Затраты времени на деталь, час/шт.
1/12 1/10 1/6 1/10 1/12 1/10

Средние затраты времени, необходимые для изготовления одной детали, являются величиной обратно пропорциональной средней выработке, т.е.:

час/шт.

Обозначим через: - затраты времени, необходимые для изготовления детали i-тым рабочим; - количество рабочих в цехе; - средние затраты времени, необходимые для изготовления одной детали. Тогда в общем виде формулу для определения средних затрат времени, необходимых для изготовления одной детали, можно записать:

.

Данная формула получила название средней гармонической простой.

Пример 5.4. На основе сгруппированных данных, представленных в таблице примера 5.2, определить средние затраты времени, необходимые для изготовления одной детали (среднюю трудоемкость).

Решение.

Так как затраты времени, необходимые для изготовления одной детали, являются величиной обратно пропорциональной выработке, то для каждой группы рабочих по выработке можно определить соответствующую трудоемкость:

Выработка, шт./час Количество рабочих Затраты времени на деталь, час/шт.
1/6 1/10 1/12

Средние затраты времени, необходимые для изготовления одной детали, являются величиной обратно пропорциональной средней выработке, т.е.:

час/шт.

Обозначим через: - затраты времени, необходимые для изготовления детали i-ой группой рабочих; - количество выделенных групп рабочих по трудоемкости; - количество рабочих, относящихся к i-той группе по трудоемкости; - средние затраты времени, необходимые для изготовления одной детали. Тогда в общем виде формулу для определения средних затрат времени, необходимых для изготовления одной детали, можно записать:

.

Данная формула получила название средней гармонической взвешенной.

Для определения среднего значения интервального ряда распределения по одной из рассмотренных формул в качестве величины принимается середина соответствующего интервала. Среднее значение интервала рассчитывается по формуле средней арифметической, т.е. как полусумма значений нижней и верхней границ интервала. В случае если ряд распределения имеет первый (последний) открытый интервал, то его необходимо закрыть. Для этого определяют длину последующего (предыдущего) интервала и считают, что закрываемый интервал имеет такую же длину. Тем самым находят нижнюю (верхнюю) границу открытого интервала, т.е. закрывают его.

Выбор той или иной формулы для определения средней величины зависит от экономического смысла усредняемого признака.

Средней арифметической величине присущи следующие математические свойства:

1) произведение средней величины на сумму частот ряда распределения равно сумме произведений каждого значения изучаемого признака на соответствующую ему частоту:

;

2) сумма отклонений каждого значения изучаемого признака от средней величины равна нулю:

;

3) сумма квадратов отклонений каждого значения изучаемого признака от средней величины всегда меньше, чем сумма квадратов их отклонений от любой другой величины:

;

4) уменьшение или увеличение каждого значения изучаемого признака на одну и туже величину приводит к изменению средней на эту величину:

;

5) уменьшение или увеличение каждого значения изучаемого признака в одно и тоже число раза приводит к изменению средней величины в это же число раз:

или ;

6) уменьшение или увеличение частоты каждого значения изучаемого признака в одно и тоже число раз не приводит к изменению средней величины:

.

5.2. Для определения средней арифметической величины часто используется метод моментов (метод отсчета от условного нуля).

В основе этого метода лежат математические свойства средней арифметической, согласно которым, уменьшение (увеличение) всех значений признака на одну и туже величину или уменьшение (увеличение) в одно и тоже число раз, приводит к изменению средней на эту величину или в это же число раз.

Согласно методу моментов среднюю арифметическую рассчитывают по формуле:

,

где - i-тое значение признака или середина i-го интервала;

- значение признака (середина интервала), имеющего наибольшую частоту (условный нуль);

- общий множитель для всех значений признака или их отклонений от условного нуля (для ряда с равными интервалами принимается длина интервала);

- частота i-го значения признака или частное от его сокращения на наибольший общий делитель .

Пример 5.5. По данным о выпуске продукции предприятиями отрасли (столбцы 1 и 2 таблицы) определить по методу моментов среднегодовой объем выпуска продукции.

Решение.

Предварительные вычисления представим в таблице, приняв , .

Группы предприятий по объему выпуска, тонн Число предприятий в % к итогу
1000 - 3000 -4000 -2 -24
3000 - 5000 -2000 -1 -20
5000 - 7000
7000 - 9000
9000 - 11000
        -6

Тогда тонн.

Использование метода моментов для определения средней арифметической величины позволяет значительно упростить громоздкие вычисления. При этом если частоты имеют достаточно большой общий делитель, то целесообразно их сократить на эту величину. В этом случае среднее значение не изменится.

5.3. Структурные средние величины − это величины, значения которых совпадают с определенными значениями изучаемого признака совокупности. К структурным средним величинам относятся мода и медиана.

Мода − это значение признака, наиболее часто встречающегося в изучаемой совокупности.

Для совокупности (дискретного ряда распределения) мода определяется визуально. Для этого просматривается совокупность (дискретный ряд распределения) и то значение признака, которое чаще всего встречается (имеет наибольшую частоту), и будет соответствовать моде.

Для интервального ряда распределения сначала определяется модальный интервал (имеющий наибольшую частоту), а затем рассчитывается значение моды по формуле:

,

где - нижняя граница модального интервала;

- длина модального интервала;

- частота модального интервала;

- частота интервала предшествующего модальному;

- частота интервала следующего за модальным.

В случае если модальным является первый (последний) интервал, то величина принимается равной нулю . Количество мод в совокупности (ряде распределения) может быть несколько.

Медиана − это значение признака, находящегося в середине упорядоченной совокупности.

Для совокупности (дискретного ряда распределения) с нечетным количеством элементов медиане будет соответствовать значение признака, имеющего порядковый номер . Для совокупности (дискретного ряда распределения) с четным количеством элементов медиане будет соответствовать среднее арифметическое двух значений признака, имеющих порядковые номера и .

Для интервального ряда распределения сначала определяется медианный интервал (находящийся в середине ряда распределения), а затем рассчитывается значение медианы по одной из двух формул:

,

,

где , - соответственно нижняя и верхняя границы медианного интервала;

- длина медианного интервала;

- частота медианного интервала;

- сумма частот всех интервалов ряда распределения;

- сумма частот всех интервалов ряда распределения, предшествующих медианному.

- сумма частот медианного интервала и всех ему предшествующих.

Для определения моды и медианы в ряде распределения с неравными интервалами целесообразно в процедуре расчета вместо частоты (частости) интервала использовать его плотность распределения.


Тема 6. Вариационный анализ

6.1. Показатели вариации и способы их расчета

6.2. Виды дисперсий. Правило сложения дисперсий

6.1. Вариацией называется изменение значения признака в пределах изучаемой совокупности. Для осуществления вариационного анализа рассчитываются следующие основные показатели вариации: размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение и коэффициент вариации.

Размах вариации представляет собой максимальное значение, на которое изменяется варьирующий признак в совокупности и определяется по формуле:

,

где , - соответственно максимальное и минимальное значения признака.

Среднее линейное отклонение − это среднее арифметическое модуля отклонения каждого значения признака от его средней величины. Определяется:

- для совокупности:

;

- для ряда распределения:

,

где - количество значений признака (интервалов);

- i-тое значение признака (середины интервала);

- среднее значение признака;

- частота i-го значения признака (интервала).

Дисперсия − это среднее арифметическое квадрата отклонения каждого значения признака от его средней величины. Определяется:

- для совокупности:

;

- для ряда распределения:

.

Дисперсии присущи следующие математические свойства:

1) уменьшение или увеличение каждого значения изучаемого признака на одну и туже величину не приводит к изменению дисперсии:

;

2) уменьшение или увеличение каждого значения изучаемого признака в А раз приводит к изменению дисперсии в А2 раз:

или ;

3) уменьшение или увеличение частоты каждого значения изучаемого признака в одно и тоже число раз не приводит к изменению дисперсии:

;

4) дисперсия, вычисленная от средней арифметической, всегда меньше дисперсии, вычисленной от любой другой величины, на квадрат разности между средней и этой величиной:

.

Приняв , дисперсию ряда распределения можно рассчитать как разность между средним квадратом значения признака и квадратом среднего значения признака:

,

где - средний квадрат значения признака, рассчитывается:

или ;

- квадрат среднего значения признака.

Для расчета дисперсии часто используется метод моментов (метод отсчета от условного нуля), в основе которого лежат математические свойства дисперсии.

Согласно методу моментов дисперсия рассчитывается по формуле:

,

где - i-тое значение признака или середина i-го интервала;

- значение признака (середина интервала), имеющего наибольшую частоту (условный нуль);

- общий множитель для всех значений признака или их отклонений от условного нуля (для ряда с равными интервалами принимается длина интервала);

- частота i-го значения признака или частное от его сокращения на наибольший общий делитель .

- среднее значение признака, рассчитанное по методу моментов.

Пример 6.1. По данным о выпуске продукции предприятиями отрасли (столбцы 1 и 2 таблицы) определить по методу моментов дисперсию ряда.

Решение.

Предварительные вычисления представим в таблице, приняв , .

Группы предприятий по объему выпуска, тонн Число предприятий в % к итогу
1000 - 3000 -4000 -2 -24
3000 - 5000 -2000 -1 -20
5000 - 7000
7000 - 9000
9000 - 11000
          -6

Тогда .

Использование метода моментов для определения дисперсии позволяет значительно упростить громоздкие вычисления. При этом если частоты имеют достаточно большой общий делитель, то целесообразно их сократить на эту величину. В этом случае значение дисперсия не изменится.

Среднее квадратическое отклонение определяется как квадрат-ный корень из дисперсии:

- для совокупности:

;

- для ряда распределения:

.

Коэффициент вариации можно определить как отношение среднего квадратического отклонения и средней величины признака:

.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.