Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Конфликт и его формальная модель





Принимающие участие в конфликте стороны элементы некоторого абстрактного мно­жества. Часто оказывается целесообразным считать их подмножествами некоторого универсального множе­ства; элементы последнего принято называть игроками, а под­множества игроков, которые являются действующими сторона­ми в конфликте, — коалициями действия (различные коалиции действия могут пересекаться и даже содержаться одна в другой). Множество всех коалиций действия в конфликте далее будет обозначаться через Âd.

Каждая из коалиций действия К принимает некоторое реше­ние из некоторого множества sk доступных для нее решений. Элементы множества sk называются стратегиями коалиции К.

Выбор каждой из коалиций действия некоторой стратегии оп­ределяет то, что называется исходом конфликта. При этом не обя­зательно, чтобы этот исход понимался как однозначно определен­ное детерминированное явление. Допустимо, чтобы тот или иной из этих исходов был множеством физических явлений или же слу­чайным явлением, т.е. множеством явлений с вероятностной ме­рой на нем. Кроме того, некоторые комбинации выбранных коа­лициями действия стратегий могут оказаться несовместимыми и потому неосуществимыми. В этом случае принято считать, что конфликт не состоялся. (В применении к играм (конфликты) это может выражаться в появлении некоторой помехи, прервавшей иг­ру (конфликты) без возможности ее продолжения).



Все исходы конфликта называются ситуациями. Из сказан­ного выше следует, что ситуации составляют некоторое множе­ство S, являющееся подмножеством множества всех комбинаций стратегий коалиций действия, т.е. декартова произведения мно­жеств стратегий.


S Ì P SК

K Î Âd.

По поводу заинтересованных в исходах конфликта сторон можно повторить почти все, сказанное в связи с коалициями действия. Их называют коалициями интересов, и они считают­ся элементами некоторого абстрактного множества, которое далее будет обозначаться через Âи. Коалиции интересов суть подмножества того же множества игроков, что и коалиции действия.

В теории игр множества коалиций действия и множества коалиций интересов рассматриваются как различные. Легко ви­деть, что в реальных конфликтах могут встречаться коалиции действия, не являющиеся коалициями интересов, и наоборот.

Рассмотрим, наконец, форму выражения заинтересованности для коалиций интересов. Эта заинтересованность проявляется в том, что каждая из этих коалиций предпочитает одни исходы конфликта другим.

Это описывается в виде некоторого отношения предпочте­ния — абстрактного бинарного отношения ýк на множестве всех ситуаций. Тот факт, что коалиция интересов К предпочитает си­туацию х ситуации у, обозначается как х ýк у.

Вообще говоря, никаких свойств у отношения ýк не предпо­лагается, хотя обычно оно считается транзитивным

(т.е. из х ýк у и уýк Z следует х ýк Z).

В частности, не требуется, чтобы отношение было линей­ным, т.е. чтобы любые две ситуации были сравнимы друг с другом (в формальной записи для любых двух различных ситуа­ций х и у либо х ýк у, либо у ýк х).

Нередко отношение предпочтения задается следующим образом. На множестве ситуаций S определяется функция Hк, принимающая вещественные значения и называемая функцией выиг­рыша коалиции интересов К. Ее значение Нк (х) понимается как выигрыш, который коалиция К получает в ситуации х. Естест­венно принять, что х ýк у, если Нк (х) > Нк (у).

Итак, конфликтом (или игрой) называется система

Г= <Âd. í Sк ý к ÎÂd, S, Âи , { ý к } к ÎÂи >

где перечисленные в ломаных скобках множества и отноше­ния связаны друг с другом, как это было описано выше. Мате­матическая теория игр занимается изучением конфликтов (игр) именно в этом понимании.

Смешанная стратегия игрока есть вероятностное распределение на множестве его чистых стратегий.

Ситуация равновесия

Пусть дан конфликт (игра) Г. Говорят, что ситуация (т.е. n-набор стратегий) (si*, s2**,..., sn *) равновесна, или что она является ситуацией равновесия, если для любого i = 1, ..., п и для любого s1Î Si имеет место неравенство

.

 

Другими словами, ситуация равновесна, если ни один игрок не имеет никаких разумных оснований для изменения своей стратегии при условии, что все остальные игроки собираются придерживаться своих стратегий. В этом случае, если каждый иг­рок знает, как будут играть остальные, он имеет основание при­держиваться той стратегии, которая соответствует этой ситуации равновесия; тем самым игра становится весьма устойчивой.

Не все игры имеют ситуацию равновесия. Например, игра в орлянку такой ситуации не имеет.

Если конфликт не имеет ситуаций равновесия, то обычно некоторые игроки пытаются отгадать стратегии остальных уча­стников, сохраняя собственные стратегии в тайне. Что постоян­но приводит к нестабильности в развитии взаимодействия. Это наводит на мысль (и это действительно верно), что в конфлик­тах с полной информацией ситуации равновесия существуют.







Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2022 zdamsam.ru Размещенные материалы защищены законодательством РФ.