Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Высокопараллельные многопроцессорные вычислительные системы





Высокопараллельные МПВС (их иногда называют ВС с массовым параллелизмом) имеют несколько разновидностей:

1. Магистральные(конвейерные) МПВС, у которых процессор одновременно выполняет разные операции над последовательным потоком обрабатываемых данных. По принятой классификации такие МПВС относятся к системам с многократным потоком команд и однократным потоком данных (МКОД или MISD — Multiple Instruction Single Data).

2. Векторные МПВС, у которых все процессоры одновременно выполняют одну команду над различными данными — однократный поток команд с многократным потоком данных (ОКМД или SIMD — Single Instruction Multiple Data).

ПРИМЕЧАНИЕ

Принцип SIMD используется и для повышения производительности микропроцессоров — суперскалярные (векторные) МП Pentium III, Pentium 4, PowerPC и др.

3. Матричные МПВС, у которых микропроцессор одновременно выполняет разные операции над последовательными потоками обрабатываемых данных — многократный поток команд с многократным потоком данных (МКМД или MIMD — Multiple Instruction Multiple Data).

Условные структуры однопроцессорной (SISD) и упомянутых многопроцессорных ВС показаны на рис. 4.7.

Рис. 4.7. Условные структуры высокопараллельных МПВС

На рис. 4.7 представлены: а - SISD, б -SIMD, в - MISD, г - MIMD.

Ассоциативные и потоковые ВС

Ассоциативные (АВС) и потоковые (ПВС) вычислительные системы являются разновидностями высокопараллельных МПВС.

Ассоциативные вычислительные системы

АВС строится на базе организованной в виде массива ассоциативной памяти — ассоциативно-запоминающего устройства (АЗУ). Доступ к ячейкам АЗУ осуществляется не по адресу, а по их содержимому, точнее — по ассоциативному признаку (поисковому образу), соответствующему хранимой в ячейке информации. Если в ячейке содержится информация, содержащая заданный признак, эта информация считывается. Поиск ассоциативного признака выполняется по всем ячейкам массива памяти, считывание осуществляется одновременно из всех найденных ячеек массива памяти. Определенные группы ячеек массива памяти имеют свои локальные процессоры, позволяющие при считывании выполнять логические и арифметические операции над считываемой информацией. Запись в АЗУ производится в любую свободную ячейку (у ячейки имеется признак: свободная она или нет).

Отметим, что ячейки АЗУ должны допускать считывание без разрушения информации, так как считывание выполняется сразу из нескольких ячеек и автоматически выполнить перезапись считанной информации, как это делается в обычных адресных ОЗУ, невозможно (или, по крайней мере, очень сложно). Ячейки могут маскироваться своими локальными процессорами и, если это необходимо, не подвергаться считыванию без предъявления пароля.

Элементы ассоциативной выборки данных используются для заполнения КЭШ-памяти в микропроцессорах.

Потоковые вычислительные системы

Эффективной технологией, поддерживающей параллельность вычислений в ВС, является технология управления последовательностью выполнения команд программы потоком данных. В традиционных фон Неймановских машинах последовательность выполнения команд управляется счетчиком команд; команды выполняются строго в той последовательности, в которой они следуют в программе, то есть в последовательности их записи в памяти машины (естественно, если нет команд передачи управления). Это затрудняет организацию параллельного выполнения сразу нескольких команд программы.

Теоретически существует несколько моделей управления последовательностью исполнения команд в машине:

l последовательностью следования команд в программах;

l потоком данных: команда выполняется, как только доступны все ее операнды;

l по запросу: команда выполняется, как только результаты ее исполнения потребуются другим командам.

Управление потоком данных естественно поддерживает параллельность вычислений, ибо как только появятся исходные данные для выполнения нескольких команд, эти команды могут параллельно одновременно выполниться. Вычислительные системы, в которых последовательность выполнения команд программы управляется потоком данных, называются потоковыми ВС. Элементы потокового управления используются и в микропроцессорах. Так в МП Pentium при конвейерной обработке инструкции выполняются параллельно, причем, вне порядка, установленного в программе, а по мере готовности операндов и наличия свободных функциональных устройств.

Суперкомпьютеры

К суперкомпьютерам относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов — десятки миллиардов операций с плавающей запятой в секунду (MFLOPS). Суперкомпьютеры применяются для решения таких сложных вычислительных задач, как задачи обеспечения государственной безопасности, задачи исследования космоса, метеопрогнозы (в том числе предсказание мощности и траекторий движения ураганов, прогнозирование глобального потепления), биохимические исследования животных и человека, контроль работоспособности ядерного оружия и надежности АЭС и др.

Первый суперкомпьютер был задуман в 1960 и создан в 1972 году (машина ILLIAC IV с производительностью 20 MFLOPS), а начиная с 1975 года лидерство в разработке суперкомпьютеров захватила фирма Cray Research, выпустившая Cray 1 c производительностью 160 MFLOPS и объемом оперативной памяти 8 Мбайт, а в 1984 году — Cray 2, в полной мере реализовавший архитектуру SIMD (см.гл.16) и ознаменовавший появление нового поколения суперкомпьютеров. Производительность Cray 2 — 2000 MFLOPS, объем оперативной памяти — 2 Гбайта (классическое соотношение, ибо критерий сбалансированности ресурсов компьютера — «каждому MFLOPS производительности процессора должно соответствовать не менее 1 Мбайт оперативной памяти»).

В настоящее время в мире насчитывается несколько тысяч суперкомпьютеров, начиная от простых офисных Cray EL до мощных Cray 3, Cray 4, Cray Y-MP C90 фирмы Cray; Research, Cyber 205 фирмы Control Data; SX-3 и SX-X компании NEC; VP 2000 компании Fujitsu, (обе фирмы японские), VPP 500 компании Fujitsu Siemens (немецко-японская) и др. производительностью несколько сотен тысяч MFLOPS.

В декабре 1996 года фирма Intel объявила о создании суперкомпьютера Sandia, впервые в мире преодолевшего терафлопный барьер быстродействия. За 1 час 40 минут компьютер выполнил 6,4 квадриллиона операций с плавающей запятой. Конфигурация, достигшая производительности 1060 MFLOPS по тесту MP LINPACK, представляла собой 57 стоек, содержащих более 7000 процессоров Pentium Pro с тактовой частотой 200 МГц и оперативную память 454 Гбайт. Окончательный вариант суперкомпьютера имеет производительность 1,4 TFLOPS, включает 86 стоек общей площадью 160 м2, 573 Гбайта оперативной и 2250 Гбайт дисковой памяти. Масса компьютера составляет около 45 тонн, а пиковое потребление энергии — 850 КВт.

В 1998 году японская фирма NEC (Nippon Electric Company) Corporation сообщила о создании суперкомпьютеров SX-5 с производительностью 4 TFLOPS, содержащих 512 процессоров и обеспечивающих общую скорость передачи данных 32 Тбайт/с.

Среди лучших суперкомпьютеров можно отметить и отечественные суперкомпьютеры. В сфере производства суперкомпьютеров Россия, пожалуй, впервые, представила собственные оригинальные модели компьютеров (все остальные, включая и ПЭВМ, и малые ЭВМ, и универсальные компьютеры за редким исключением, например, ЭВМ «Рута 110», копировали архитектуру зарубежных компьютеров и, в первую очередь, разработки фирм США). В СССР, а позднее в России была разработана и реализуется (сейчас, правда, почти заморожена) государственная программа разработки суперкомпьютеров. В рамках этой программы были спроектированы и выпущены такие суперкомпьютеры, как: повторяющая Cray-архитектуру модель «Электроника СС БИС»; оригинальные разработки: ЕС 1191, ЕС 1195, ЕС 1191.01, ЕС 1191.10, «Эльбрус».

Рис. 4.8. Структурная схема суперкомпьютера «Эльбрус»

На рис. 4.8 приведена структура суперкомпьютера «Эльбрус 3», разработанного в Институте точной механики и вычислительной техники (ИТМ и ВТ, Москва). Характеристики суперкомпьютера «Эльбрус 3»:

l производительность 10 000 MFLOPS;

l разрядность 64 бита (имеется возможность работы с 128-разрядными словами);

l 16 магистральных процессоров по 7 арифметико-логических устройств и 16 Мбайт оперативной памяти в каждом (итого — 256 Мбайт);

l общая оперативная память — 8 блоков по 256 Мбайт (итого — 2048 Мбайт);

l суммарная емкость оперативной памяти 1616+8256=2304 Мбайт;

l 8 процессоров ввода-вывода, каждый из которых имеет:

l медленный канал;

l быстрый канал;

l дисковый канал для обмена данными, соответственно, с: внешними устройствами, модульными комплексами телеобработки и накопителями на магнитных дисках, часто с дисковыми массивами типа RAID.

Используются операционные системы «Эльбрус» и UNIX, поддерживающие большое число языков программирования: Эль, Фортран, Паскаль, Кобол, Пролог и т. д. Для суперкомпьютера «Эльбрус» разработан один из первых в мире микропроцессор E2k, имеющий VLIW-архитектуру.

Кластерные суперкомпьютеры

В настоящее время активно развивается технология построения мэйнфреймов и суперкомпьютеров на базе кластерных решений. По мнению многих специалистов, на смену отдельным независимым суперкомпьютерам должны прийти группы высокопроизводительных серверов, объединяемых в кластер. Удобство построения кластерных ВС заключается в том, что можно гибко регулировать необходимую производительность системы, подключая к кластеру с помощью специальных аппаратных и программных интерфейсов обычные серийные серверы до тех пор, пока не будет получен суперкомпьютер требуемой мощности. Кластеризация позволяет манипулировать группой серверов как одной системой, упрощая управление и повышая надежность.

Важной особенностью кластеров является обеспечение доступа любого сервера к любому блоку как оперативной, так и дисковой памяти. Эта проблема успешно решается, например, объединением систем SMP-архитектуры (SMP — Shared Memory multiProcessing, технология мультипроцессирования с разделением памяти) на базе автономных серверов для организации общего поля оперативной памяти и использованием дисковых систем RAID для организации внешней памяти.

Программное обеспечение для кластерных систем уже выпускается. Примером может служить компонент Cluster Server операционной системы MS Windows NT/2000 Enterprise. Этот компонент, более известный под кодовым названием Wolfpack, обеспечивает как функции управления кластером, так и функции диагностирования сбоев и их восстановления (Wolfpack определяет сбой программы или отказсервера и автоматически переключает поток вычислений на другие работоспособные серверы).

Несколько фирм (Dell, Sun Microsystems, IBM) уже продемонстрировали свои достижения в области суперкомпьютерных кластерных технологий (фирма IBM, например, представила модель человеческого сердца, реализованную в кластере серверов RS/6000). Компания NEC в 2002 году представила созданный в Центре науки и технологии моря в Канагаве, Япония, рекордный по быстродействию (в 2002 году) кластерный компьютер модели Земли (Earth Stimulator): скорость вычислений 35,86 TFLOPS (35 триллионов операций с плавающей запятой в секунду), пиковая — 40,96 TFLOPS. Имеется единственный экземпляр этого компьютера, построенный на основе МП 5120 NEC Vector, объединенных в 640 кластеров по 8 процессоров в каждом. Вся система занимает площадь 3250 м2 (65×50 м).

В 2005 году IBM представила суперкомпьютер Blue Gene/L, построенный для Национальной Ядерной Лаборатории (LLNL, Lawrence Livermore National Laboratory). Суперкомпьютер показал производительность 135,3 TFLOPS, был поставлен рекорд производительности.

Все фирмы отмечают существенное снижение стоимости кластерных систем по сравнению с локальными суперкомпьютерами, обеспечивающими ту же производительность.

Основные достоинства кластерных суперкомпьютерных систем:

l высокая суммарная производительность;

l высокая надежность работы системы;

l наилучшее соотношение производительность/стоимость;

l возможность динамического перераспределения нагрузок между серверами;

l легкая масштабируемость, то есть наращивание вычислительной мощности путем подключения дополнительных серверов;

l удобство управления и контроля работы системы.

Вопросы для самопроверки

1. Назовите основные классы вычислительных машин и дайте их сравнительную характеристику.

2. Дайте общую характеристику и определите область использования мэйнфреймов.

3. Дайте общую характеристику и определите область использования малых ЭВМ.

4. Рассмотрите особенности построения Notebook.

5. Что такое технология Centrino и каковы ее особенности.

6. Что такое технология Slip speed и каковы ее возможности?

7. Что такое Netbook и каковы его особенности?

8. Назовите функциональные возможности и особенности построения планшетных компьютеров.

9. Что такое Райтеры?

10. Что такое Ридеры?

11. Рассмотрите функциональные возможности и особенности построения КПК.

12. Рассмотрите особенности построения и функциональные возможности коммуникаторов.

13. Рассмотрите функциональные возможности и особенности построения электронных секретарей (PDA).

14. Рассмотрите функциональные возможности и особенности построения электронной записной книжки.(Organizer).

15. Дайте общую характеристику и определите область использования суперЭВМ.

16. В чем особенности архитектуры суперкомпьютеров?








Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.