Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Устойчивость РАСТЕНИЙ К ВЫСОКИМ ТЕМПЕРАТУРАМ





Растения различаются по способности выносить повышенные температуры. Большинство растений начинают страдать при температуре 35–40°С. Лучше переносят повышенную температуру обезвоженные органы: семена до 120°С, пыльца до 70°С. Однако есть высшие растения, главным образом растения пустынь (например, суккуленты), которые переносят повышение температуры до 60°С. Некоторые водоросли, грибы и бактерии могут переносить еще более высокую температуру. Наиболее термофильными являются микроорганизмы (бактерии, некоторые водоросли), обитающие в горячих источниках и в кратерах вулканов, которые способны переносить повышение температуры до 100°С.

Температура транспирирующих листьев ниже температуры воздуха. Обычно растения снижают температуру с помощью транспирации и таким образом избегают перегрева. Водный дефицит, который возникает при недостатке воды, увеличивает неблагоприятное действие повышенных температур. Высокая температура оказывает губительное влияние на организмы, что вызывает повреждения мембран и белков. Различные белки-ферменты денатурируют при различной температуре. Однако даже частичная денатурация некоторых наиболее термолабильных ферментов приводит к нарушению согласованности процессов обмена. Накапливаются растворимые азотистые соединения и другие ядовитые промежуточные продукты обмена, в результате чего происходит гибель клеток. Высокая температура тормозит как фотосинтез, так и дыхание. Уменьшается сопряженность энергетических процессов. Особенно чувствителен к повышенной температуре фотосинтез. Депрессия этого процесса обычно начинается уже при 35–40°С. Необходимо заметить, что при повышенных температурах уменьшается активность фитогормонов. Резко падает активность гиббереллинов, что является одной из причин торможения ростовых процессов.

Жаростойкость достигается рядом приспособительных изменений метаболизма, в том числе возрастание вязкости цитоплазмы, увеличение содержания осмотически активных веществ, органических кислот, связывающих аммиак. Устойчивые к высокой температуре растения способны к синтезу более жароустойчивых белков-ферментов. На организменном уровне жароустойчивость связана с приспособлениями, направленными на уменьшение освещенности путем свертывания листьев или уменьшения их величины.

При высоких температурах в клетках синтезируются специфические белки, толерантные к перегреву, и поэтому называемые белками теплового шока (БТШ). Они были открыты в 1962 г. у дрозофилы, потом у человека, затем у растений (1980 г.) и микроорганизмов. БТШ помогают клетке выжить при действии температурного стрессора и восстановить физиологические процессы после его прекращения. БТШ образуются в результате экспрессии определенных генов. У сои показано, что при температуре от 25 до 40°С синтезируются специфические мРНК, а через 3–5 мин после повышения температуры появляются белки. Клетки, способные к образованию таких белков устойчивы к высоким температурам. Так, в опытах на арабидопсисе индуцирование экспрессии транскрипционного фактора, участвующего в синтезе БТШ, повышало устойчивость к жаре. При подавлении синтеза БТШ, устойчивость резко падала. Некоторые из этих БТШ синтезируются не только при повышенной температуре, но и при других стресс-факторах, например, при недостатке воды, низких температурах, действии солей. Показано, что после действия одного стрессора клетки становятся устойчивыми к другим. Так, томаты после 48-часового действия 38°С выдерживали температуру 2°С 21 сутки.



Для повышения устойчивости к высоким температурам используют различные методы закаливания. Так, чередование действия повышенных температур и нормального режима, позволяет получить более жаростойкие растения. Аналогичный эффект наблюдается после выдерживания семян пшеницы в течение 8 ч при постепенном повышении температуры от 20 до 50°С. Повышение жаростойкости также достигается обработкой семян хлоридом кальция, сульфатом цинка, борной кислотой.

УСТОЙЧИВОСТЬ РАСТЕНИЙ К НИЗКИМ ТЕМПЕРАТУРАМ

Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкостью понимают способность теплолюбивых растений переносить низкие положительные температуры, под морозоустойчивостью – способность растений переносить отрицательные температуры.

 

ХОЛОДОСТОЙКОСТЬ РАСТЕНИЙ

Теплолюбивые растения сильно страдают при положительных пониженных температурах. Внешними симптомами страдания растений являются завядание листьев, появление некротических пятен. Первичный эффект пониженных положительных температур связан с повреждением мембран, увеличением их проницаемости. Возрастает потеря мембранами ионов кальция, выход калия из цитоплазмы. Показано, что меняется молекулярная архитектура мембран, расположение в них липидных молекул, происходят конформационные изменения белков. Резко меняются свойства мембран митохондрий и хлоропластов. В связи с этим нарушаются процессы окислительного и фотосинтетического фосфорилирования. Степень повреждения мембран зависит от содержания насыщенных жирных кислот, которые при действии низках температур переходят в состояние геля, что снижает их подвижность, нарушает транспорт веществ и энергетические процессы. Происходит увеличение содержания супероксидных радикалов и других АФК.

Благодаря нарушениям обменных процессов в организме накапливаются промежуточные продукты метаболизма. В нормальных для данного вида растений температурных условиях все реакции, протекающие в организме, хорошо согласованы друг с другом, продукты одной реакции сейчас же перерабатываются. В том случае, если растения попадают в неблагоприятные температурные условия, эта согласованность нарушается. Дело в том, что различные биохимические реакции характеризуются разной зависимостью от температуры. Одни реакции при снижении температуры резко замедляются, другие – нет. Это приводит к нарушению обмена и к накопление вредных продуктов. Так, резко тормозятся реакции цикла Кребса, благодаря тему накапливаются продукты гликолиза. Возрастает активность альтернативного пути дыхания. Уже отмечалось, что интенсификация этого процесса позволяет увеличить тепловыделение и способствует повышению температуры цветков что необходимо при опылении и оплодотворении. При продолжительном воздействии пониженной температуры наступает гибель теплолюбивых растений.

Защитное значение при действии низких положительных температур на теплолюбивые растения имеет ряд приспособлений. Прежде всего, это поддержание стабильности мембран и предотвращение утечки ионов. Устойчивые растения отличаются большей долей ненасыщенности жирных кислот в составе фосфолипидов мембран. Это позволяет поддерживать подвижность мембран и предохраняет от разрушений. В этой связи большую роль выполняют ферменты ацетилтрансферазы и десатуразы. Последние приводят к образованию двойных связей в насыщенных жирных кислотах. Показано, что мутанты, у которых отсутствуют эти ферменты, не могут переносить пониженные температуры. Вместе с тем введение в геном теплолюбивых культур гена, кодирующего десатуразу, приводило к повышенной устойчивости к холоду. Трансформированные растения табака с вводом гена ацетилтрансферазы, выделенного из холодоустойчивой формы арабидопсиса, отличаются повышенным содержанием ненасыщенных жирных кислот и возрастанием холодостойкости.

Приспособительные реакции к низким положительным температурам проявляются в способности поддерживать метаболизм при ее снижении. Это достигается более широким температурным диапазоном работы ферментов, синтезом протекторных соединений. У устойчивых растений возрастает роль ПФП дыхания, эффективность работы антиоксидантной системы, синтезируются стрессовые белки. Показано, что при действии низких положительных температур индуцируется синтез низкомолекулярных белков. Экспериментальные данные показали общность реакции генома на тепловое и холодовое воздействие.

Это проявилось в изменении интенсивности транскрипции одних и тех же генов низкомолекулярных белков. Причем в условиях теплового шока (40°С, 2 ч) наблюдалась стимуляция, а холодового (4°С, 10 мин) ингибирование их активности.

Для повышения холодостойкости используется предпосевное замачивание семян. Для этого наклюнувшиеся семена теплолюбивых культур в течение нескольких суток выдерживают в условиях чередующихся температур: 12 ч при 1–5°С, 12 ч при 15–22°С. Эффективным является и использование микроэлементов (Zn, Mn, Сu, В, Мо). Так, замачивание семян в растворах борной кислоты, сульфата цинка или сульфата меди повышает холодоустойчивость растений. Есть, данные о положительном влиянии АБК, цитокининов, хлорхолинхлорида на холодоустойчивость.

 

МОРОЗОУСТОЙЧИВОСТЬ РАСТЕНИЙ

Двулетние и многолетние растения, растущие в умеренной полосе, периодически подвергаются воздействию низких отрицательных температур. Разные растения обладают неодинаковой устойчивостью к этому воздействию. Для того чтобы подойти к вопросу о механизме морозоустойчивости, важно уяснить причины повреждения и гибели растения при воздействии низких отрицательных температур. Изучение физиологических основ морозоустойчивости показало, что у одного и того же растения она меняется в зависимости от условий, предшествующих наступлению морозов.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.