Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







ЦЕМЕНТАТОРЫ, МЕТОДЫ УПЛОТНЕНИЯ СОСТАВОВ





 

Основной вид применения пиротехнических составов — это прессованная или иная уплотненная форма. В большинстве пиротехнических изделий выгодно иметь наибольшую плотность упаковки энергии, а это достигается помещением в наименьший объем максимального количества пиротехнической смеси, то есть каким-либо уплотнением смеси.

Уплотнение и формование пиротехнических составов производится различными способами: прессованием, заливкой, шнекованием, а в некоторых случаях и набивкой вручную. Наиболее часто применяющимся способом снаряжения пиротехнических составов является способ холодного прессования на механических или гидравлических прессах. Иногда применяется способ горячего прессования при температуре 60...100°С, этот способ может несколько повысить плотность изделий, однако опасен из-за резкого увеличения чувствительности большинства составов к механическим воздействиям.

Метод горячей заливки (расплавленного состава) применяется при достаточной легкоплавкости компонентов смеси и используется в основном в военной пиротехнике при снаряжении боеприпасов (снарядов, бомб и пр.). В этом случае легкоплавкие ВВ, например, тринитротолуол и его сплавы с другими ВВ заливается в корпуса боеприпасов в расплавленном состоянии, по своим химическим характеристикам не будучи при температуре плавления чувствительными к механическим воздействиям. В общей пиротехнике практически не существует составов нечувствительных к воздействиям при температуре их плавления, большинство составов просто воспламеняются при этом. Поэтому применяется метод холодной заливки, при этом составляется смесь обычно твердого окислителя (или окислителя с калорийными металлическим горючим) и жидкого полимерного горючего (в виде мономера). Достаточно густая обезгаженная (предварительно вакуумированная) взмученная смесь заливается в корпуса пиротехнических изделий, а затем отверждается в корпусах при помощи заранее введенного в смесь отвердителя (катализатора полимеризации). Таким же способом заливки под вакуумом или в среде инертных газов с незначительным подогревом снаряжают фосфорные боеприпасы. Напалмовые боеприпасы заряжают обычно холодной заливкой, их загущение не препятствует этому. Метод шнекования в сухом виде практически неприменим, а шнекование в виде пластических смесей мало отличается от методов заливки, однако этот метод отличается наибольшей производительностью, так как является непрерывным.

Вообще уплотнение составов кроме увеличения показателей плотности упаковки энергии, делает горение состава более медленным и равномерным, в большинстве случаев, не давая горению сделаться неуправляемым (перейти во взрыв). Уплотненный состав должен обладать большой механической прочностью, особенно это свойство необходимо в тех случаях, когда пиротехнические изделия (факела, звездки, сегменты, трассеры) в момент их использования испытывают значительные разрушающие механические усилия. Уплотненные изделия должны обладать настолько большой механической прочностью, чтобы ни при стрельбе, ни при горении не наблюдалось растрескивания и отколов отдельных кусков состава. Прочность изделий повышается с увеличением давления прессования, но предел прочности при сжатии спрессованного изделия обычно не превышает 20...25% от удельного давления прессования. Высота одновременно прессуемого столба состава при одностороннем прессовании не должна превышать диаметр прессуемого изделия более чем в 1,5...2 раза. В противном случае передача давления от слоя к слою смеси уже не осуществляется в должной мере, и нижняя часть спрессованного столба состава остается недостаточно уплотненной. При двустороннем прессовании это соотношение может быть значительно увеличено, то есть прессованная форма может быть значительно длиннее.

 

рисунок 1. Матрица и пуансон.

 

  1. пуансон
  2. матрица
  3. прессуемая смесь
  4. поддон

 

Существуют расчетные формулы позволяющие определить примерную прочность спрессованного изделия, однако в оригинальных изделиях необходимое давление прессования большей частью подбирается опытным путем, исходя из необходимой скорости горения и оптимальных показателей достижения специального эффекта горения. Достигнуть высокой прочности спрессованных составов только применением высоких давлений прессования не всегда представляется возможным и целесообразным.

В целях увеличения прочности пиротехнических изделий в составы часто вводят связующие (склеивающие) вещества, получившие название цементаторов. Чаще всего в качестве цементаторов используются искусственные смолы, каучук и некоторые другие вещества такие как сера, гипс и прочее. В зерненных составах также могут применяться цементаторы для придания прочности отдельным зернам состава. При прессовании составов достаточную прочность в некоторых случаях удается получить и без цементаторов, но обычно при прессовании введение цементатора необходимо поскольку позволяет снизить давление прессования, при сохраненении достаточной прочности.

 

Наиболее часто употребимые цементаторы

 

Идитол — хорошо растворим в этиловом спирте и в виде спиртового раствора вводится в пиротехническую смесь перед уплотнением. Идитол может вводиться в смесь также в виде порошка, а во время или после прессования форма нагревается до 100...200°С, при этом идитол расплавляясь связывает частицы смеси в единое целое.

Бакелит имеет 3 основные формы А, В и С, применяемые в зависимости от необходимых характеристик прочности и времени горения изделия.

Бакелит формы А вводится в смеси в виде спиртового раствора или порошка, для придании изделиям максимальной прочности применяют так называемую «бакелизацию», то есть нагревают готовое изделие до температуры около 150°С, при этом бакелит формы А переходит в бакелит формы С, имеющий максимальную прочность, нерастворимость, стойкость к химическим воздействиям.

Шеллак — естественная смола, растворима в этиловом спирте, прекрасный цементатор, при горении выделяющий незначительное количество дыма. В настоящее время применяется редко из-за дороговизны.

Канифоль — естественная смола, растворимая в алкоголе, при нагревании растворяется в олифе.

Резинаты — продукты взаимодействия канифоли с гидроокисями и солями металлов, растворяются в бензине или спирто-бензиновой смеси.

Олифа натуральная — продукт частичной полимеризации и оксидации льняного масла, растворяется в бензине и уайт-спирите.

Декстрин — растительный клей, растворяется в горячей и холодной воде.

Кроме упомянутых классических цементаторов в настоящее время применяют различные полимерные вещества в неполимеризованном состоянии (мономеры), как в чистом виде, так и в виде растворов в различных растворителях. Такие полимеры вводят в пиротехнические смеси с добавлением соответствующих катализаторов полимеризации, либо полимеризуют при нагревании или облучении их УФ излучением. В числе таких мономеров полиуретаны, метилметакрилат, эпоксидные смолы.

 

Количество вводимого в состав цементатора

 

Цементаторы вводят в состав пиротехнических смесей в количестве от 1 до 12%, в зависимости от назначения и желаемой прочности изделий. Введение цементатора в количестве более 12% повышает прочность изделия уже незначительно, поэтому для повышения механических характеристик изделия большее количество цементатора вводить нецелесообразно. При введении цементаторов особенно канифоли и резината кальция сильно замедляется процесс горения составов. Поэтому для получения составов с необходимой скоростью горения в основную смесь горючее-окислитель при необходимости вводят цементатор в количестве превышающем 12%.

 

 

ПРИНЦИПЫ СОСТАВЛЕНИЯ И РАСЧЕТА ПИРОТЕХНИЧЕСКИХ СОСТАВОВ

 

После выбора основных компонентов смеси возникает задача подбора массовых соотношений компонентов состава, причем количество окислителя должно быть достаточным для сгорания всего горючего без участия кислорода воздуха.

 

Расчет двойных смесей

 

Для получения рецепта двойной смеси необходимо записать уравнение реакции горения и на его основании произвести расчет массовых соотношений между окислителем и горючим. Рассмотрим конкретный пример.

 

KClO4 + 4Mg = KCl + 4MgO

 

Атомный вес калия 39, 1у.е.; хлора 35,45у.е.; кислорода 16у.е. Общий вес перхлората калия составляет 39,1 + 35, 45 + 16 • 4 = 138,55у.е., округленно - 139у.е. Атомный вес магния 24,31у.е. • 4 = 97,24у.е., округленно - 97у.е. Таким образом на 139г перхлората калия приходится 97г магния. Сложив количество окислителя и горючего, получаем: 139г + 97г = 236г смеси.

Составляем пропорции:

236г: 100% = 139г: х% откуда х = 59,9% KClO4

236г: 100% = 97г: х% откуда х = 41,1% Mg

Округляем полученные цифры и получаем рецепт состава: 59% KClO4 и 41% Mg.

При составлении уравнений далеко не всегда можно предугадать состав конечных продуктов реакции с полной уверенностью, особенно это касается тех случаев когда реакция разложения окислителя проходит в несколько стадий, окислитель недостаточно энергичен, температура реакции недостаточно высока, горючее недостаточно калорийно, имеет органическое происхождение, или является солями кислот, например, желтая кровяная соль. Знание состава конечных продуктов реакции, а, значит, и составление точного уравнения возможно только в том случае, когда имеются данные химического анализа продуктов реакции. Не имея их можно говорить только о вероятном уравнении реакции горения.

В связи с вышесказанным, следует говорить о наиболее вероятном в данном конкретном случае уравнении распада окислителя (смотри таблицу 1) и наиболее вероятных продуктах окисления горючего (смотри таблицы 4 и 9).

Например: найти рецепт двойной смеси из нитрата бария и магния. В таблице 1 находим уравнение распада окислителя:

 

Ba(NO3)2 = BaO + N2 + 2,5O2

 

В таблице 4 указано, что продукт окисления магния есть MgO. Записываем вероятное уравнения реакции:

 

Ba(NO3)2 + 5Mg = BaO + N2 + 5MgO

 

Из уравнения определяем рецепт состава - 68% Ba(NO3)2 и 32% Mg. Полученный состав используется в качестве фотосмеси. При недостатке окислителя в смеси, магний сгорит за счет кислорода воздуха, поэтому количество окислителя может быть уменьшено ниже 68%, однако, интенсивность горения такой смеси будет ниже чем составленной по уравнению. Мощность светового излучения в импульсе окажется также несколько ниже. При составлении уравнений горения составов, содержащих уголь или органическое горючее, можно вести расчет либо на полное окисление горючего с образованием углекислого газа и воды, либо, при уменьшенном содержании окислителя, рассчитывать на образование воды и окиси углерода. Для примера составим уравнения реакции горения нитрата калия и идитола для обоих случаев.

 

12KNO3 + C13H12O2 = 6K2O + 6N2 + 13CO2 + 6H2O

 

реакция протекает до образования двуокиси углерода, рецепт смеси - 86% KNO3 на 14% идитола.

 

34KNO3 + 5C13H12O2 = 17K2O + 17N2 + 65CO + 30H2O

 

реакция протекает до образования окиси углерода, рецепт смеси - 77% KNO3 на 23% идитола.

Уравнения только в известной мере соответствуют действительности, поскольку при горении смесей нитратов с органическими горючими образуются и некоторые количества нитрита и окиси калия, а при соединении окиси калия с углекислым газом образуется и карбонат калия.

Подбор коэффициентов при расчете смесей с органическими горючими требует много времени, в связи с этим А.Н. Демидовым было предложено пользоваться таблицами, в которых указано сколько граммов окислителя потребуется для выделения 1 грамма активного кислорода и какое количество горючего может быть окислено 1 граммом этого кислорода до высших окислов. Эти таблицы составлялись следующим образом. Известно, что в условиях горения составов, например, перхлорат аммония разлагается по уравнению:

 

2NH4ClO4 = N2 + 2HCl + 3H2O + 2,5O2

 

Из уравнения, масса ПХА составляет 235г, масса выделившегося кислорода 80г.

Составляя пропорцию 235г.: 80г = хг.: 1г, находим х = 2,93г. Таково количество ПХА, выделяющее при разложении 1г кислорода.

Окисление алюминия протекает по уравнению:

 

2Al + 1,5O2 = Al2O3

 

Масса алюминия 54г, масса кислорода для его окисления 48г. Из пропорции 54г.: 48г. = хг.: 1г находим х = 1,12г, то есть количество алюминия, который может быть окислен 1г кислорода.

Пример работы с таблицами: Найти рецепт реактивного горючего (без цементатора) состоящего из ПХА и алюминия.

В графе 7 таблицы 1 находим для ПХА число 2,93, а в графе 6 таблицы 4 число 1,12 для алюминия, эти числа в сущности выражают массовые количества компонентов, входящих в смесь, выраженные в граммах.

ПХА 2,93г, алюминий 1,12г, всего смеси: 2,93г + 1,12г = 4,05г. Составляем пропорцию: 4,05г / 100% = 2,93г / х%, где х равен 72%, то есть количеству ПХА в смеси. Рецептура смеси - 72% NH4ClO4, 28% Al.

Рассмотренная смесь имеет характер примера, так как металлическое горючее в полученном количестве вводить в реактивные топлива нецелесообразно по причинам, рассмотренным в разделе "Реактивные топлива". А для получения достаточной механической прочности заряда необходимо введение значительного количества горючего, служащего одновременно цементатором. Таким образом, реально необходимо рассчитать не двойную, а тройную смесь веществ.

 

Расчет тройных и многокомпонентных смесей

 

В некоторых случаях тройные смеси можно рассматривать как состоящие из двух двойных смесей содержащих в себе один и тот же окислитель. Однако, это сравнение весьма приблизительно, так как наличие в составе двух разных горючих может резко изменить направление реакции и тогда этот подход становиться неприемлемым.

Так, например, в случае состава нитрат бария + алюминий + сера в результате его горения происходит взаимодействие между алюминием и серой с образованием Al2O3 и SO2. В состав продуктов горения такого состава могут входить также: BaO, Al2O3, Ba(AlO2)2, BaS, BaSO4, Al2S3, SO2, N2 и другие.

Состав продуктов горения зависит не только от соотношения компонентов в составе, но и от условий горения: давления, начальной температуры, условий теплоотвода и теплопередачи, плотности состава и так далее. При весьма приближенных расчетах тройных смесей, содержащих в себе окислитель, металлическое горючее и органическое горючее, например, какой-либо цементатор может использоваться следующий прием.

Пример: найти рецепт тройной смеси нитрат бария + магний + идитол. Составляя уравнение реакции или используя таблицы Демидова, находим рецептуры двойных смесей:

1. 68% Ba(NO3)2 на 32% Mg.

2. 88% Ba(NO3)2 на 12% идитола.

Считая, что содержание 4% идитола в составе обеспечивает достаточную механическую прочность осветительной звездки, выбираем соотношение двойных смесей равным 2:1, осуществляем расчет,(число 3, стоящее в знаменателе приводимых дробей, получается при сложении массовых частей обоих смесей).

Нитрат бария (68 • 2) / 3 + (88 • 1) / 3 = 75%

Магний (32 • 2) / 3 = 21%

Идитол (12 • 1) / 3 = 4%

Очевидно, что выбранное наудачу соотношение между двумя двойными смесями не является оптимальным и требует экспериментального уточнения с учетом достижения максимального специального эффекта, ожидаемого от осветительных составов. Можно привести еще несколько примеров составления рецептур тройных составов, однако, в любом случае окончательную точку ставит эксперимент.

Для практической работы проще составить рецепт основной смеси, а затем экспериментально подобрать количество вспомогательного вещества, являющегося горючим, одновременно корректируя введение окислителя в большую сторону. Достаточно сказать, что рецептура типичного тройного состава черного пороха была подобрана задолго до возникновения химической науки, причем эта рецептура практически не изменилась по сию пору.

 

Расчет составов с отрицательным кислородным балансом

 

Во многих случаях специальный эффект пиротехнических составов повышается, если в процессе горения горючее окисляется не только кислородом окислителя, но также и кислородом воздуха. В этом случае повышается теплота горения состава, которая при прочих равных условиях тем больше, чем больше в нем будет содержаться полностью сгорающего горючего и меньше окислителя. Это возможно тогда, когда в окислении принимает участие кислород воздуха, который должен легко окислять применяемое в составе горючее.

Наиболее распространенным горючим, сгорание которого в составе может происходить также и за счет кислорода воздуха, является магний. Во многих случаях могут применяться составы, где лишь половина магния окисляется за счет кислорода окислителя, другая же половина сгорает за счет кислорода воздуха.

Трудноокисляемые горючие (грубодисперсные частицы алюминия, кремния) должны полностью окисляться кислородом окислителя, так как они не могут полностью сгореть за счет кислорода воздуха.

Количество горючего, которое может сгореть за счет кислорода воздуха определяется опытным путем, сжиганием исследуемого горючего с различным количеством окислителя и последующим анализом продуктов горения. Пиротехнические составы, содержащие в себе избыток окислителя сверх того, что необходимо для полного окисления горючего, называют составами с положительным кислородным балансом, однако, избыток окислителя, не участвующий в процессе горения, является безусловно вредным и в пиротехнике практически не применяется кроме специальных случаев, например, в хлоратных кислородных свечах (смотри раздел "Пиротехнические источники газов").

Составы, содержащие в себе количество окислителя, необходимое для полного сгорания горючего до высших окислов, называют составами с нулевым кислородным балансом.

Составы, содержащие в себе окислитель в количестве недостаточном для полного окисления горючего называют составами с отрицательным кислородным балансом.

Большинство применяемых в настоящее время пиротехнических составов являются составами с отрицательным кислородным балансом.

Под термином "кислородный баланс (n) состава" понимают то количество кислорода в граммах, добавление которого необходимо для полного окисления всего горючего в 100 г состава.

Отношение количества окислителя, которое содержится в составе, к количеству окислителя, необходимому для полного сгорания всего содержащегося в составе горючего, называют коэффициентом обеспеченности состава окислителем (k). Кислородный баланс, при наличии которого в составе получается наилучший специальный эффект, называют оптимальным кислородным балансом.

При расчетах двойных смесей магния или алюминия с нитратами щелочных или щелочноземельных металлов используются понятия "активный" и "полный" кислородный баланс.

"Активный" баланс - это отдача окислителем только непрочно связанного, так называемого "активного" кислорода.

 

Sr(NO3)2 + 5Mg = SrO + N2 + 5MgO

 

"Полный" баланс - в расчет принимается весь кислород, содержащийся в окислителе, а уравнение составляется так, как будто металл, содержащийся в окислителе восстанавливается до свободного состояния.

 

Sr(NO3)2 + 6Mg = Sr + N2 + 6MgO

 

Составы с "полным" кислородным балансом фактически являются составами с отрицательным кислородным балансом, поскольку только в редких случаях окислитель может отдать весь содержащийся в его составе кислород на окисление горючего.

При расчете составов с отрицательным балансом задается необходимый кислородный баланс в граммах кислорода.

Пример: рассчитать двойную смесь хлората калия с магнием, при условии что ее кислородный баланс n = - 20г O2, то есть недостаток кислорода для сгорания состава с указанным n составит 20г, каковое количество будет подчерпнуто из воздуха.

В таблицах 1 и 4 находим для хлората калия и магния числа 2,55 и 1,52, соответственно. Вычисляем, что 20г кислорода окисляют 20 • 1,52 = 30,4г магния.

Остающиеся 69,6г состава должны быть рассчитаны обычным путем на нулевой кислородный баланс.

Содержание хлората калия в составе (2,55 • 69,6) / (2,55 + 1,52) = 43,6%. Магния в составе будет 100 - 43,6 = 56,4%. За счет кислорода окислителя будет сгорать 56,4 - 30,4 = 26,0% магния.

Коэффициент обеспеченности горючего окислителем будет в данном случае равен k = 26,0 / 56,4 = 0,46.

Аналогичный расчет может быть осуществлен и для многокомпонентных смесей.

Вычисление кислородного баланса n и коэффициента k в готовых составах дает возможность судить о степени необходимости горящего состава в контакте с кислородом воздуха, выяснить причины искрения состава, возможность его затухания и тому подобное.

Порядок вычисления n и k для имеющихся готовых составов показан в примере.

Пример: рассчитать n и k для состава желтого огня, имеющего рецепт:

Из таблицы 1 и 5 находим, что для сгорания в углекислый газ и воду 0,47г шеллака или 8,37г оксалата натрия необходимо 2,55г хлората калия, следовательно, для сгорания 15г шеллака требуется (2,55 • 15) / 0,47 = 81,5г хлората калия, а для сгорания 25г оксалата натрия требуется (2,55 • 25) / 8,37 = 7,6г хлората калия.

Коэффициент обеспеченности состава окислителем:

 

 

Значение кислородного баланса:

 

O2

 

Расчет металлогалогенных составов

 

В металлогалогенных составах роль окислителя выполняет хлор или фторорганическое соединение, а роль горючего - активный металл.

Окислитель берется в таком количестве, чтобы содержащегося в нем хлора или фтора хватило на полное окисление металла до высшего хлористого или фтористого соединения.

Например:

 

C2Cl6 + 3Zn = 2C + 3ZnCl2

 

Для расчетов используется таблица 6, в которой указывается количество окислителя отдающего при распаде 1г хлора или фтора и количество металла, соединяющегося с 1г галогена.

Таблица 6.

Хлорорганическое соединение (окислитель) Молекулярн­ый вес Кол-во вещества, отдающее 1гр. СI Металл-горючее Атомный вес Кол-во металла, соединяющееся с 1р. CI
Четырехлористьй углерод ССI4   1,08 Цинк 65,4 0,92
Гексахлорэтан С2СI6   1,11 Алюминий 27,0 0,27
Гексахлорбензол С6СI6   1,34 Магний 24,3 0,34
Гексахлорциклогексан (гексахлоран) С6Н6СI6   1,37 Цирконий 91,2 0,64
Поливинилхлорид (С2Н3СI)n 60,5 1,76 Железо 55,8 0,53 образуется FeCI3
0,79 образуется FeCI2

 

Пример: Рассчитать содержание компонентов в двойной смеси гексохлорэтан-алюминий, используя данные таблицы 6

Или в процентах: гексахлорэтан (1,11 • 100) / 1,38 = 80,5%, алюминий 100 - 80,5 = 19,5%

Пример: рассчитать состав зеленого огня повышенной цветности, содержащий нитрат бария-гексахлорэтан-магний. Известно, что для получения пламени хорошей цветности с окислителями нитратами содержание хлорорганических соединений в составе должно быть не менее 15%

Решение: на соединение с 15% C2Cl6 потребуется (смотри таблицу 6) (15 • 0,34) / 1,11 = 4,6% магния.

Разлагаясь, гексахлорэтан образует (15 • 24) / 234 = 1,5% углерода, который должен быть окислен как минимум CO. Пользуясь таблицами 1 и 5 находим в них цифры 3,27 и 0,75 и из пропорции 0,75 / 3,27 = 1,5 / х вычисляем необходимое для окисления углерода количество нитрата бария, х = 6,5%.

Теперь известно, что в 100г состава должно содержаться 15г C2Cl6 + 4,6г Mg + 6,5г Ba(NO3)2.

Узнаем сколько граммов состава приходится на двойную смесь Ba(NO3)2+Mg: 100 - 15 - 4,6 - 6,5 = 73,9г.

Пользуясь таблицами 1 и 4, находим, что в 73,9г смеси содержится (3,27 • 73,9) / (3,27 + 1,52) = 48,7г Ba(NO3)2 и 25,2г Mg.

Подведя итог, получаем рецепт:

Образующийся при обменной реакции в пламени BaCl2, придает пламени зеленую окраску.

При добавлении в полученный состав цементатора шеллака, на основании данных из таблиц 1 и 5 находим, что 5% шеллака требуют для сгорания (3,27 • 5) / 0,80 = 20,4% Ba(NO3)2

В 100г состава смеси нитрат бария + шеллак будет 20,4 + 5 = 25,4г.

Уменьшим в предыдущем составе количество двойной смеси нитрат бария + магний на полученную величину 73,9 - 25,4 = 48,5г и находим, что в 48,5г смеси нитрат бария + магний содержится 32,0г нитрата бария и 16,5г магния, суммируя данные - получаем новый рецепт:

Во фторметаллических составах роль окислителя выполняют фториды малоактивных металлов или фторорганические соединения (тефлоны, фторопласты, фторлоны).

Рассмотрим пример составления рецептов фторметаллических составов, пользуясь данными таблицы 7.

Таблица 7

Фтористое соединение (окислитель) Молекулярный вес Количество вещества, отдающее 1 г фтора Металл-горючее Атомный вес Количество металла, соединяющееся с 1 г фтора
Дифторид меди CuF2   2,74 Бериллий 9,0 0,24
Фторид серебра AgF   6,68 Магний 24,3 0,64
Дифторид свинца PbF2   6,45 Алюминий 27,0 0,47
Фторопласт - 4 (тефлон) (C2F4)n 100 мономер 1,32 Цирконий 91,2 1,2
Тетрафторид ксенона XeF4   2,72      

 

Рассчитать двойную смесь тефлона с магнием.

Решение: на соединение с 1,32г тефлона потребуется 0,64г магния. Всего смеси 1,32 + 0,64 = 1,96г.

Содержание тефлона в смеси будет равно: (1,32 • 100) / 1,96 = 67,3%

Содержание магния: 100 - 67,3 = 32,7%

 

 







Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.