Тема 10. Теорема о движении центра масс. Количество движения и кинетический момент механической системы. Теорема об изменении количества движения. Теорема об изменении кинетического момента.
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Тема 10. Теорема о движении центра масс. Количество движения и кинетический момент механической системы. Теорема об изменении количества движения. Теорема об изменении кинетического момента.





I: 213.

S:Человек массы m = 60 кг переходит с носа на корму лодки. На какое расстояние по величине | s |переместится лодка длины l = 3 м, если её масса M = 120 кг?

| s | = … (м).

+: 1.

I: 214.

S:Колесо радиуса R = 0,5 м и массы m = 10 кг катится со скольжением по горизонтальной прямой под действием приложенного к нему вращательного момента M = 6 Нּм. Определить ускорение aC центра масс C колеса, если коэффициент трения скольжения равен f = 0,1. Ускорение свободного падения принять равным g = 10 м/с2. aC = …

+: 1

 

I: 215.

S:Колесо радиуса R = 0,5 м и массы m = 10 кг скатывается с наклонной плоскости вниз. Его центр масс C движется по закону xC = t 2 (м). Определить модуль главного вектора внешних сил |F(e)|, действующих на колесо; |F(e)| = … (Н).

+: 20

I: 216.

S:Тело массы m = 40 г, брошенное вертикально вверх с начальной скоростью v0 = 30 м/с, достигло высшей тоски спустя время t = 2,5 сек. Найти среднюю силу сопротивления F сопр. воздуха, действовавшую на тело во время движения. (Результат вычисления округлить до третьего знака после запятой включительно.) (g = 9,81 м/с2) F сопр. = … (Н)

+: 0,088

 

I: 217.

S:Тело 1 массой m = 50 кг поднимается по наклонной плоскости с помощью троса, намотанного на барабан 2 радиуса R = 0,4 м. Угловое ускорение барабана ε = 5 рад/с2. Определить модуль вектора всех внешних сил вектора внешних сил |F(e)|, действующих на тело;

|F(e)| = … (Н).

 

+: 100

I: 218.

S:Шкив 1 массы М = 20 кг и радиуса R = 0,4 м, вращаясь с угловой скоростью ω = 2,5 рад/с, поднимает груз 2 массы m = 10 кг. Определить модуль количества движения |Q| механизма;

|Q| = … (кгּм/с).

 

+: 10

I: 219.

S:Мяч массы m = 150 г ударяется о гладкую стенку под углом α = 30о к ней и отскакивает без потери скорости. Найти среднюю силу F, действующую на мяч со стороны стенки, если скорость мяча v0 = 10 м/с, а продолжительность удара Δ t = 0,1 сек. F = … (Н).



+: 15

 

I: 220.

S:Масса каждого из тёх звеньев шарнирного параллелограмма ОАВС (ОА, АВ, СВ)равна 3 кг. Длина кривошипа ОА равна 0,6 м. Кривошип ОА вращается равномерно с угловой скоростью ω = 5 рад/с.

Определить модуль количества движения |Q| механизма; |Q| = … (кгּм/с).

 

+: 18

 

I: 221.

S:Поезд массы m = 500 тонн после прекращения тяги тепловоза останавливается под действием силы трения Fтр = 0,1 МН (мега-ньютон) через время t = 1 мин. С какой скоростью v шёл поезд до момента прекращения тяги тепловоза? v = …(м/с)

+: 12

I: 222.

S:Цилиндр 1 вращается с угловой скоростью ω = 20 рад/с. Его момент инерции относительно оси вращения Ј = 2 кгּм2 , радиус r = 0,5 м. Груз 2 имеет массу m2 = 1 кг.

Определить модуль количества движения |Q| механизма; |Q| = … (кгּм/с).

+: 10

I: 223.

S:В кривошипно-шатунном механизме ОАВ, расположенном в горизонтальной плоскости, кривошип ОА и шатун АВ имеют каждый массу m = 3 кг, а ползун В имеет массу m/2 = 1,5 кг. Длина кривошипа OA l = 0,6 м, длина шатуна AB 2ּl = 1,2 м. Угловая скорость кривошипа равна ω= 5 рад/с.

Определить модуль количества движения |Q| механизма в тот момент, когда угол α = π/2;

|Q| = … (кгּм/с).

+: 18

I: 224.

S:Какова средняя сила давления F на плечо при стрельбе из автомата, если масса пули m = 10 г, а скорость пули при вылете из ствола v = 300 м/с? Число выстрелов из автомата в единицу времени n = 300 мин– 1. F = … (Н).

+: 15

 

I: 225.

S:Орудие, имеющее массу ствола М = 500 кг, стреляет в горизонтальном направлении. Масса снаряда m = 5 кг, его начальная скорость v = 460 м/с. При выстреле ствол откатывается на расстояние s = 40 см. Найти среднюю силу торможения F(кН), возникающую в механизме, тормозящем ствол (результат вычисления округлить до целого числа); F = … (килоньютон)

+: 13

I: 226.

S:Человек, стоящий на коньках на гладком льду реки, бросает камень массы m = 0,5 кг. Спустя время t = 2 сек. камень достигает берега, пройдя расстояние s = 20 м. С какой скоростью u начинает скользить конькобежец, если его масса M = 60 кг? Трением пренебречь. (Результат вычисления округлить до второго знака после запятой включительно.)

u = … (м/с)

+: 0,08

 

I: 227.

S:Тело массы M = 990 г лежит на горизонтальной поверхности. В него попадает пуля массы m = 10 г и застревает в нём. Скорость пули v = 700 м/с и направлена горизонтально. Какой путь s пройдет тело до остановки? Коэффициент трения между телом и поверхностью k = 0,05. (Результат вычисления округлить до целого числа.) (g = 9,8 м/с2)

s = … (м)

+: 50

 

I: 228.

S:Ракета, имеющая вместе с зарядом массу M = 250 г, взлетает вертикально вверх и достигает высоты h = 150 м. Масса заряда m = 50 г. Найти скорость v истечения газовиз ракеты (относительно земли), считая, что сгорание заряда происходит мгновенно. (Результат вычисления округлить до целого числа.)

v = … (м/с).

+: 217

 

I: 229.

S:Масса платформы с орудием и боеприпасами составляет M = 20 тонн. С этой платформы, движущейся со скоростью u = 9 км/час, производится выстрел из орудия. Снаряд массы m = 25 кг вылетает из ствола орудия со скоростью v = 700 м/с (относительно орудия). Найти скорость платформы u1 (км/час) непосредственно после выстрела, если направления движения платформы и выстрела совпадают. (Результат вычисления округлить до целого числа.)

u1 = … (км/час).

+: 6

I: 230.

S:Масса платформы с орудием и боеприпасами составляет M = 20 тонн. С этой платформы, движущейся со скоростью u = 9 км/час, производится выстрел из орудия. Снаряд массы m = 25 кг вылетает из ствола орудия со скоростью v = 700 м/с (относительно орудия). Найти скорость платформы u1 (км/час) непосредственно после выстрела, если направления движения платформы и выстрела противоположны. (Результат вычисления округлить до целого числа.)

u1 = … (км/час).

+: 12

I: 231

S:Ядро, летевшее со скоростью v = 200 м/с, разорвалось на два осколка с массами m1 = 10 кг и m2 = 5 кг. Скорость первого осколка v1 = 300 м/с и направлена так же, как и скорость ядра до разрыва. Найти скорость v2 второго (меньшего) осколка; v2 = … (м/с).

+: 0

I: 232.

S:Центр масс колеса С движется по окружности радиуса R = 1,6 м согласно закону s = 4ּt (м). Масса колеса m = 15 кг.

Модуль главного вектора внешних сил, приложенных к колесу равен … (Н)

 

+: 150

I: 233.

S:Трубка вращается вокруг вертикальной оси Oz, её момент инерции Јz = 0,075 кгּм2 . По трубке под действием внутренних сил системы движется шарик М массой m = 0,1 кг. Когда шарик находится на Оz, угловая скорость ω0 = 4 рад/с. Затем угловая скорость становится равной ω1 = 3 рад/с. Это стало на расстоянии l.

Определить расстояние l; l = … (м).

 

+: 0,5

I: 234.

S:Тело вращается вокруг вертикальной оси Oz под действием пары сил с моментом М = 16ּt (Нּм). При t = 0 тело находилось в покое, а в момент t = 3 с угловая скорость ω = 2 рад/с.

Определить момент инерции (кгּм2) тела относительно оси Oz.

Отметьте правильный ответ.

 

-: 24;+: 36; -: 42; -: 54

 

I: 235.

S:Горизонтальная трубка CD может свободно вращаться вокруг вертикальной оси AB. Внутри трубки на расстоянии b = 0,2 м, от оси находится шарик M. В некоторый момент времени трубке сообщается начальная угловая скорость ω0 = 5 рад/сек. Определить угловую скорость ω трубки в момент, когда шарик вылетит из трубки. Момент инерции трубки относительно оси вращения равен J = 0,7 кгּм2, её длина L = 1 м; шарик считать материальной точкой массы m = 0,5 кг; трением пренебречь. ω = … (рад/с).

+: 3

I: 236.

S:Два вагонамасс m1 = 20 тонн и m2 = 30 тонн, двигавшиеся навстречу друг другу по горизонтальному прямолинейному участку пути со скоростями v1 = 3 м/с и v2 = 2,5 м/с соответственно, сцепляются после соударения. Пренебрегая сопротивлениями движению, определить модуль скорости v сцепа; v = … (м/с).

+: 0,3

I: 247.

S:Снаряд массы m = 12 кг, летевший со скоростью v = 800 м/с, разорвался в воздухе на 240 равных по массе осколков. Разлёт осколков в системе отсчёта, связанной с первоначальным снарядом, является сферически симметричным, и скорость каждого осколка в этой системе отсчёта равна vотн = 600 м/с. Модуль количества движения системы осколков относительно земли равен … (кгּм/с).

+: 9600

I: 238.

S:Кривошипно-ползунный механизм прикреплён к станине массы M, установленной на гладком горизонтальном фундаменте. Масса ползуна B механизма равна m, причём M = 9ּm. Пренебрегая массой звеньев OA и AB, длины которых соответственно OA = l, OA и AB = 2ּl, найти максимальное значение vmax скорости станины, если кривошип вращается с постоянной угловой скоростью ω и при t = 0 угол φ = 0 и начальная скорость станины равна нулю.

 

Искомая скорость vmax имеет вид vmax = Κּωּl. Определить Κ (результат вычисления – с точностью до первого знака после запятой). Κ = … .

+: 0,1

I: 239.

S:Через участки трубы постоянного сечения и различной формы со скоростью v протекает жидкость заполняющая всё сечение трубы. Направление установившегося движения жидкости указано на рисунке стрелками. Полагая вес участков трубы и заполняющей их жидкости одинаковыми во всех четырёх случаях, установить, в каком из этих случаев сила нормального давления трубы на основание оказывается наибольшей

 

-: 1); -: 2); +: 3); -: 4)

I: 240.

S:Шарик массой m = 100 г свободно упал на горизонтальную площадку, имея в момент удара скорость v = 10 м/с. Найти модуль изменения количества движения при абсолютно неупругом |Qнеупруг| и абсолютно упругом |Qупруг| ударах;

|Qнеупруг| = … (кгּм/с), |Qупруг| = … (кгּм/с).

+: 1*2

I: 241.

S:Диск массой m = 20 кг вращается равномерно вокруг неподвижной оси с угловой скоростью ω = 10 рад/с. Центр тяжести удалён от оси вращения на расстояние ОС = 0,5 см.

Модуль главного вектора внешних сил, приложенных к диску, равен … (Н).

+: 10

I: 242.

S:Два груза одинаковой массы m = 2 кг каждый закреплены по концам невесомого нерастяжимого каната, переброшенного через однородный шкив массы m = 2 кг и радиуса r = 0,1 м. Зная угловую скорость вращения ω = 5 рад/с шкива и пренебрегая проскальзыванием каната относительно шкива, определить модуль количества движения |Q| данной механической системы; |Q| = … (кгּм/с).

+: 0

I: 243.

S:Два груза одинаковой массы m = 2 кг каждый закреплены по концам невесомого нерастяжимого каната, переброшенного через однородный шкив массы m = 2 кг и радиуса r = 0,1 м. Зная угловую скорость вращения ω = 5 рад/с шкива и пренебрегая проскальзыванием каната относительно шкива, определить модуль кинетического момента |Kz| данной механической системы относительно оси вращения (числовой результат определить с точностью до второго знака после запятой);

|Kz| = … (кгּм2/с).

+: 0,25

I: 244.

S: Материальная точка массой 1 кг равномерно движется по окружности со скоростью 10 м/с. Найти модуль изменения количества движения за одну четверть периода |ΔQ1/4|; половину периода |ΔQ1/2|; целый период |ΔQ1| (результат вычисления округлить до целого числа);

Q1/4| = … (кгּм/с), |ΔQ1/2| = … (кгּм/с), |ΔQ1| = … (кгּм/с).

+: 14*20*0

I: 245.

S: Охотник стреляет из ружья с лодки по направлению её движения. Какую скорость v имела лодка, если она остановилась после быстро следующих друг за другом выстрелов? Масса охотника с лодкой 200 кг, масса заряда 20 г. Скорость вылета дроби и пороховых газов 500 м/с. (Числовой результат определить с точностью до первого знака после запятой.) v = … (м/с).

+: 0,1

I: 246.

S: Вагон массой 20 т, движущийся со скоростью 0,3 м/с, нагоняет вагон массой 30 т, движущийся со скоростью 0,2 м/с. Какова скорость вагонов после взаимодействия, если удар неупругий? (Числовой результат определить с точностью до второго знака после запятой.)

v = … (м/с).

+: 0,24

I: 247.

S: С лодки массой 200 кг, движущейся со скоростью v =1 м/с, прыгает мальчик массой 50 кг в горизонтальном направлении с кормы в сторону, противоположную движению лодки, со скоростью 6 м/с относительно лодки. Какова скорость v1 лодки после прыжка мальчика? (Числовой результат определить с точностью до первого знака после запятой.) v1 = … (м/с).

+: 2,5

I: 248.

S:С лодки массой 200 кг, движущейся со скоростью v =1 м/с, прыгает мальчик массой 50 кг в горизонтальном направлении с носа лодки по ходу движения лодки со скоростью 6 м/с относительно лодки. Какова скорость v1 лодки после прыжка мальчика? (Числовой результат определить с точностью до первого знака после запятой. Будьте внимательны со знаком значения v1!) v1 = … (м/с).

+: - 0,5

I: 249.

S: Мяч массой 100 г, летевший со скоростью20 м/с, ударился о горизонтальную плоскость. Угол падения (угол между направлением скорости и перпендикуляром к плоскости) равен 60о. Удар абсолютно упругий, а угол отражения равен углу падения. Модуль изменения количества движения равен … (кгּм/с).

+: 2

I: 250.

S: Какую скорость относительно ракетницы приобретает ракета массой 615 г, если газы массой 15 г вылетают из неё со скоростью 800 м/с?

Скорость ракеты равна … (м/с).

+: 20

I: 251.

S:Ускорение свободного падения у поверхности Луны g = 1,623 м/с2. Радиус Луны R = 1728 км. Вычислить первую космическую скорость vкосм 1 для Луны. (Результат вычисления округлить до целого числа.) vкосм 1 = … (м/с).

+: 1675

I: 252.

S:Ускорение свободного падения у поверхности планеты Марс g = 3,71 м/с2. Радиус Марса R = 3393 км. Вычислить первую космическую скорость vкосм1 для Марса. (Результат вычисления округлить до целого числа с выбором чётной цифры округления.)

vкосм 1 = … (м/с).

+: 3548

 

I: 253.

S:Ускорение свободного падения у поверхности Земли g = 9,81 м/с2. Радиус Земли R = 6378 км. Вычислить первую космическую скорость vкосм 1 для Земли. (Результат вычисления округлить до целого числа с выбором чётной цифры округления.) vкосм 1 = … (м/с).

+: 7910

I: 254.

S:Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А12 силы при перемещении матер. точки из точки М в точку О (см. рис.); а = 6 см, b = 8 см.

АМО = … (Дж).

+: 10

I: 205

S:Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А12 силы при перемещении матер. точки из точки О в точку М (см. рис.); а = 6 см, b = 8 см.

АОМ = … (Дж).

+: – 10

I: 256.

S:Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А12 силы при перемещении матер. точки из точки М1 в точку М2 (см. рис.); ОМ1 = b = 8 см, OM2 = a = 6 см. А12 = … (Дж).

+: 2,8

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.