Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Шифраторы, дешифраторы: назначение, виды, УГО этих узлов.





Дешифраторы и шифраторы по существу принадлежат к числу преобразователей кодов. С принятием шифрации связано представление о сжатии данных, с понятием дешифрации - обратное преобразование.

Комбинационная схема, преобразующая поступающий на входы код в сигнал только на одном из ее выходов, называется дешифратором.

В условных обозначениях дешифраторов и шифраторов используются буквы DC и CD (от слов decoder и coder соответственно).

Дешифратор – это устройство, предназначенное для преобразования двоичного кода в напряжение логической единицы (логического нуля) на том выходе, номер которого совпадает со значением двоичного кода на входе.

Шифраторы выполняют обратную операцию: переводят сигнал, поданный только в один входной провод (например, в провод 9), в выходной параллельный двоичный код (в данном случае 1001), который появится на выходах шифратора. Чтобы шифратор откликался на входной сигнал только одного провода, его схему делают приоритетной. Тогда выходной код должен соответствовать номеру "старшего" входа, получившего сигнал. Предположим, активные уровни поступили на входы 3, 4 и 9. Старший по номеру здесь 9, он обладает приоритетом, поэтому выходной код шифратора 1001.Одно из основных применений шифратора - ввод данных с клавиатуры, при котором нажатие клавиши с десятичной цифрой должно приводить к передаче в устройство двоичного кода данной цифры.

Многие дешифраторы можно применять как мультиплексоры.

Большая часть данных в цифровых системах передается непосредственно по проводам и проводникам печатных плат. Обычно возникает необходимость в многократной передаче информационных двоичных сигналов из одного места в другое. В некоторых случаях нужно передавать данные на большие расстояния по телефонным линиям и кабелям. Если бы все данные передавались одновременно по параллельным линиям связи, общая длина таких кабелей была бы слишком велика, и они были бы слишком дороги. Вместо этого данные передаются по одному проводу в последовательной форме и группируются в параллельные данные на приемном конце этой единственной линии связи. Устройства, используемые для последовательной посылки и приема данных, называются соответственно мультиплексор и демультиплексор. Параллельные данные одного из цифровых устройств с помощью мультиплексора преобразуются в последовательные информационные сигналы, которые передаются по одному проводу. На выходе демультиплексора эти последовательные сигналы снова группируются в параллельные данные.

Входы мультиплексора делятся на две группы: информационные и управляющие (адресующие).

Дешифратор – это устройство, предназначенное для преобразования двоичного кода в напряжение логической единицы (логического нуля) на том выходе, номер которого совпадает со значением двоичного кода на входе. При n входах в полном дешифраторе имеется 2 n выходов, т.е. для каждой комбинации входных сигналов имеется соответствующий выход. Дешифратор, у которого при n входах число выходов меньше 2 n, называется неполным. Другое название дешифратора - декодер. Принцип работы полного трехразрядного дешифратора рассмотрим на примере его таблицы истинности.

Входы Выходы
X 3 X 2 X 1 Y 7 Y 6 Y 5 Y 4 Y 3 Y 2 Y 1 Y 0
                     
                     
                     
                     
                     
                     
                     
                     

Соответствующие таблице истинности ФАЛ имеют вид

.

Структурная схема трехразрядного дешифратора, синтезированная на основании полученных ФАЛ приведена на рис. 4.10, а, а его УГО - на рис. 4.10, б.

б)

Рис. 4.10.Структурная схема и УГО трехразрядного дешифратора.

В общем случае логические уравнения для выходных переменных дешифратора n -разрядного числа имеют вид

………

.

Построенные по полученным формулам дешифраторы называются линейными. К преимуществу линейных дешифраторов можно отнести высокое быстродействие, поскольку входные переменные одновременно поступают на все элементы И. Одновременно, без дополнительных задержек, формируется и результат на выходах этих элементов. Очевидно, что для реализации линейного дешифратора n -разрядного числа необходимо иметь 2 n логических элементов И с n -входами. В существующих микросхемах логических элементов количество входов ограничено. Следовательно, ограничена и разрядность реализуемых на их основе линейных дешифраторов, что является недостатком. Кроме того, недостатком является и то, что предыдущие элементы, работающие на входы дешифратора, должны иметь высокую нагрузочную способность, т.е. должны быть рассчитаны на подключение большого числа логических элементов И. Каждый из входов дешифратора подключен к 0,5·2 n логическим элементам И. Поскольку нагрузочная способность базовых логических элементов ИС не превышает величины N =10¸20, то максимальная разрядность дешифрируемых чисел для линейных дешифраторов n =4¸5.

Указанного недостатка лишены пирамидальные дешифраторы. Принцип построения этих дешифраторов состоит в том, что сначала строят линейный дешифратор для двухразрядного числа X 1, X 2, для чего необходимы 22=4 двухвходовые схемы И. Далее, каждая полученная конъюнкция логически умножается на входную переменную X 3 в прямой и инверсной форме. Полученная конъюнкция снова умножается на входную переменную X 4 в прямой и инверсной форме и т.д. Наращивая таким образом структуру, можно построить пирамидальный дешифратор на произвольное число входов. На рис. 4.11 приведена структура пирамидального дешифратора для трех разрядов.

Рис. 4.11. Пирамидальный дешифратор для трехразрядного числа.

Характерным отличием пирамидальных дешифраторов от линейных является использование только двухвходовых логических элементов вне зависимости от разрядности дешифрируемого числа. В то же время количество логических элементов в пирамидальном дешифраторе больше. Однако следует иметь ввиду, что количество логических элементов, располагаемых в одном корпусе ИС, определяется главным образом требуемым количеством выводов. Следовательно, в одном корпусе ИС можно расположить большее число двухвходовых элементов, чем трехвходовых, четырехвходовых и т.д. И значит, пирамидальная структура дешифратора по числу корпусов ИС может оказаться более предпочтительной, чем линейная.

Шифраторы выполняют задачу обратную той, которую выполняют дешифраторы: появление логической единицы (логического нуля) на определенном входе приводит к появлению соответствующей кодовой комбинации на выходе. Также как и дешифраторы, шифраторы бывают полными и неполными. Работа восьмивходового полного шифратора задается следующей таблицей истинности:

Входы Выходы
X 7 X 6 X 5 X 4 X 3 X 2 X 1 X 0 Y 3 Y 2 Y 1
                     
                     
                     
                     
                     
                     
                     
                     

На основании таблицы истинности можно записать ФАЛ, задающие работу восьмивходового шифратора:

.

Синтезированная на основании приведенных логических уравнений структурная схема шифратора представлена на рис. 4.12, а, а его условное графическое обозначение – на рис. 4.12, б.

а) б)

Рис. 4.12.Структура и УГО восьмивходового шифратора.

Вопрос №39







Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.