Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Энергообеспечение динамической работы при подтягивании в низком темпе





Темп подтягиваний будем считать низким, если уровень развития аэробных возможностей мышц спортсмена превышает уровень, необходимый для поддержания выбранного темпа выполнения упражнения.

Допустим, что спортсмен выполняет подтягивания в низком темпе. Первое подтягивание производится за счёт запасов АТФ в мышечных клетках, которых достаточно для мышечной работы в течение 1-2 секунд. Для дальнейшего выполнения работы по подъёму/опусканию туловища должно производиться восполнение запасов АТФ за счёт быстрой креатинфосфатной реакции, во время которой имеющийся в мышечных клетках креатинфосфат вступает во взаимодействие с АДФ (образовавшейся ранее при расщеплении АТФ) с образованием креатина и АТФ. Несколько первых подтягиваний – пока ещё не включился гликолитический механизм ресинтеза - происходят при непрерывном снижении запасов креатинфосфата, но постепенно разворачивающийся гликолиз (время выхода на максимальную мощность которого составляет около 30 секунд) начинает ресинтезировать в единицу времени всё большее количество молекул АТФ, в связи с чем скорость снижения запасов креатинфосфата начинает уменьшаться. Поскольку темп выполнения подтягиваний невысок, скорость образования лактата в мышцах также невелика, поэтому аэробный механизм энергопродукции успевает развернуться раньше, чем произойдёт «закисление» мышц. Если максимальная мощность энергопродукции механизма аэробного окисления достаточно высока, подтягивание переходит в относительно спокойное русло, когда спортсмен длительное время (по меркам подтягиваний) поддерживает ритм выполнения упражнения в режиме «1 подтягивание на 2 цикла дыхания». При этом если за счёт тканевого дыхания в паузе отдыха в висе синтезируется такое количество АТФ, что его хватает не только на обеспечение сокращений мышц, но и на частичное восполнение запасов креатинфосфата, спортсмен не будет испытывать трудностей в верхней части траектории движения и подтягивания будут производиться в течение всех 4 минут. Образовавшийся кислородный долг при этом будет невелик и спортсмену потребуется немного времени на то, чтобы восстановить дыхание после окончания подтягиваний.



Таким образом, при выполнении подтягиваний в медленном темпе аэробное окисление успевает выйти на максимальный уровень энергопродукции, и в этом случае подтягивание в целом производится в смешанном аэробно-анаэробном режиме.

Энергообеспечение динамической работы при подтягивании в повышенном темпе

Темп подтягиваний будем считать повышенным, если уровень развития аэробных возможностей мышц спортсмена недостаточен для поддержания выбранного темпа выполнения упражнения.

При подтягивании в повышенном темпе происходит следующее. Первое подтягивание выполняется за счёт запасов АТФ, имеющегося в мышечной ткани, вследствие чего концентрация АТФ уменьшается, а концентрация АДФ – увеличивается. Включается анаэробный креатинфосфатный механизм ресинтеза АТФ. В последующие 15-20 секунд подтягивание выполняется при непрерывном уменьшении запасов креатинфосфата. Снижение концентрации креатинфосфата приводит к тому, что в мышечных волокнах снижается уровень АТФ и повышается уровень АДФ. В результате этого и других процессов, происходящих в мышечных волокнах в начальный период работы (которые подробно описаны, например, в [24]), запускается следующий анаэробный механизм ресинтеза АТФ – гликолитический. В ходе гликолиза образуется молочная кислота, которая вследствие повышенного темпа выполнения подтягиваний (малых интервалов отдыха в висе в ИП) будет накапливаться в работающих мышцах во всю больших количествах. При этом концентрация креатинфосфата продолжает снижаться, поскольку гликолитические реакции при выбранном темпе выполнения упражнения не могут обеспечить ресинтез всей расходуемой АТФ, а механизм аэробного окисления ещё не успел выйти на максимальную мощность.

В итоге, поддержание темпа подтягиваний, не соответствующего уровню физической работоспособности спортсмена, приводит к печальным последствиям. Ещё то того, как механизм аэробного окисления начал бы играть существенную роль в энергообеспечении мышечных сокращений, пониженное содержание креатинфосфата и АТФ с одной стороны и повышенное содержание молочной кислоты – с другой, приводят к тому, что спортсмен начинает испытывать значительные трудности при прохождении верхнего участка траектории движения. «Зависание» на верхнем участке ещё больше усугубляет ситуацию, вызывая лавинообразное нарастание утомления, в результате чего спортсмен оказывается не в состоянии вытянуть очередное подтягивание и вынужден подолгу отдыхать в висе в ИП, чтобы восстановить силовые способности до уровня, который позволит выполнить подъём туловища. Как-то раз на городских соревнованиях доводилось наблюдать за спортсменом, который 6(!) раз подряд пытался дотянуться подбородком до грифа, но так и не смог этого сделать, каждый раз «зависая» всё раньше и раньше.

Таким образом, при повышенном темпе выполнения подтягиваний «закисление» мышц возникает ещё до того, как механизм аэробного окисления успевает выйти на максимальный уровень энергопродукции, т.е. в этом случае гликолиз является ведущим механизмом ресинтеза АТФ.

При этом спортсмен интенсивно дышит, что не помогает, т.к. несмотря на то, что кислород в мышцы поступает, он не может использоваться во-первых, вследствие низкой активности аэробного окисления в начальной части выполнения упражнения и, во-вторых – из-за накопления лактата в мышечных клетках и (связанного с этим) снижения сократительной способности мышц вследствие повышения кислотности.

Энергообеспечение динамической работы при подтягивании в максимальном темпе

При выполнении подтягиваний в предельном темпе процессы, происходящие в течение первых 15-20 секунд (этот временной отрезок ещё называют пусковой фазой) аналогичны рассмотренным ранее. Разница же состоит в том, что когда интенсивность мышечной деятельности максимальна, она и заканчивается на пусковой фазе. Вследствие максимальной интенсивности работы, гликолиз не может обеспечить потребности в АТФ, поэтому уровни креатинфосфата и АТФ в мышечных волокнах быстро снижаются до такого уровня, что спортсмен оказывается не в состоянии поддерживать необходимые усилия при заданном темпе выполнения нагрузки.

Подтягивание в максимально возможном темпе может использоваться при проведении различных тестов, например, теста на максимальное количество подтягиваний за 1 минуту. И в качестве ориентира здесь может выступать мировой рекорд Мэтта Богдановича, установленный им 25 октября 2007 года, когда за одну минуту он успел подтянуться 46 раз. Конечно, техника скоростных подтягиваний отличается от классической техники выполнения подтягиваний, принятой в полиатлоне, но о какой технике вообще можно говорить, когда на 46 подтягиваний у Вас есть всего 60 секунд?

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.