Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Формирование физического адреса в универсальном микропроцессоре при различных режимах работы





Микропроцессор способен работать в двух режимах: реальном и защищенном.

При работе в реальном режимевозможности процессора ограничены: емкость адресуемой памяти составляет 1 Мбайт, отсутствует страничная организация памяти, сегменты имеют фиксированную длину 216 байт.

Этот режим обычно используется на начальном этапе загрузки компьютера для перехода в защищенный режим.

В реальном режимесегментные регистры процессора содержат старшие 16 бит физического адреса начала сегмента. Сдвинутый на 4 разряда влево селектордает 20-разрядный базовый адрес сегмента. Физический адрес получается путем сложения этого адреса с 16-разрядным значением смещения в сегменте, формируемого по заданному режиму адресации для операнда или извлекаемому из регистра EIP для команды (рис. 3.1). По полученному адресу происходит выборка информации из памяти.


Рис. 3.1. Схема получения физического адреса

Наиболее полно возможности микропроцессора по адресации памяти реализуются при работе в защищенном режиме. Объем адресуемой памяти увеличивается до 4 Гбайт, появляется возможность страничного режима адресации. Сегменты могут иметь переменную длину от 1 байта до 4 Гбайт.

Общая схема формирования физического адреса микропроцессором, работающим в защищенном режиме, представлена на рис. 3.2.

Как уже отмечалось, основой формирования физического адреса служит логический адрес. Он состоит из двух частей: селектораи смещенияв сегменте.

Селектор содержится в сегментном регистре микропроцессора и позволяет найти описание сегмента (дескриптор) в специальной таблице дескрипторов. Дескрипторы сегментов хранятся в специальных системных объектах глобальной (GDT) и локальных (LDT) таблицах дескрипторов. Дескрипториграет очень важную роль в функционировании микропроцессора, от формирования физического адреса при различной организации адресного пространства и до организации мультипрограммного режима работы. Поэтому рассмотрим его структуру более подробно.



Сегменты микропроцессора, работающего в защищенном режиме, характеризуются большим количеством параметров. Поэтому в универсальных 32-разрядных микропроцессорах информация о сегменте хранится в


Рис. 3.2. Формирование физического адреса при сегментно-страничной организации памяти

специальной 8-байтной структуре данных, называемой дескриптором, а за сегментными регистрами закреплена основная функция - определение местоположения дескриптора.

Структура дескриптора сегмента представлена на рис. 3.3.


Рис. 3.3. Структура дескриптора сегмента

Мы будем рассматривать именно структуру, а не формат дескриптора, так как при переходе от микропроцессора i286 к 32-разрядному МП расположение отдельных полей дескриптора потеряло свою стройность и частично стало иметь вид "заплаток", поставленных с целью механического увеличения разрядности этих полей.

32-разрядное поле базового адреса позволяет определить начальный адрес сегмента в любой точке адресного пространства в 232 байт (4 Гбайт).

Поле предела(limit) указывает длину сегмента (точнее, длину сегмента минус 1: если в этом поле записан 0, то это означает, что сегмент имеет длину 1) в адресуемых единицах, то есть максимальный размер сегмента равен 220 элементов.

Величина элемента определяется одним из атрибутов дескриптора битом G (Granularity - гранулярность, или дробность):

Таким образом, сегмент может иметь размер с точностью до 1 байта в диапазоне от 1 байта до 1 Мбайт (при G = 0). При объеме страницы в 212 = 4 Кбайт можно задать объем сегмента до 4 Гбайт (приG = l):

Так как в архитектуре IA-32 сегмент может начинаться в произвольной точке адресного пространства и иметь произвольную длину, сегменты в памяти могут частично или полностью перекрываться.

Бит размерности (Default size) определяет длину адресов и операндов, используемых в команде по умолчанию:

своему усмотрению. Конечно, этот бит предназначен не для обычного пользователя, а для системного программиста, применяющего его, например, для отметки сегментов для сбора"мусора" или сегментов, базовые адреса которых нельзя модифицировать. Этот бит доступен только программам, работающим на высшем уровне привилегий. Микропроцессор в своей работе его не меняет и не использует.

Байт доступа определяет основные правила обращения с сегментом.

Бит присутствия P (Present) показывает возможность доступа к сегменту. Операционная система (ОС) отмечает сегмент, передаваемый из оперативной во внешнюю память, как временно отсутствующий, уставливая в его дескрипторе P = 0. При P = 1 сегмент находится в физической памяти. Когда выбирается дескриптор с P = 0 (сегмент отсутствует в ОЗУ), поля базового адреса и предела игнорируются. Это естественно: например, как может идти речь о базовом адресе сегмента, если самого сегмента вообще нет в оперативной памяти? В этой ситуации процессор отвергает все последующие попытки использовать дескриптор в командах, и определяемое дескриптором адресное пространство как бы"пропадает".

Возникает особый случай неприсутствия сегмента. При этом операционная система копирует запрошенный сегмент с диска в память (при этом, возможно, удаляя другой сегмент), загружает в дескриптор базовый адрес сегмента, устанавливает P = 1 и осуществляет рестарт той команды, которая обратилась к отсутствовавшему в ОЗУ сегменту.

Двухразрядное поле DPL (Descriptor Privilege Level) указывает один из четырех возможных (от 0 до 3) уровней привилегий дескриптора, определяющий возможность доступа к сегменту со стороны тех или иных программ (уровень 0 соответствует самому высокому уровню привилегий).

Бит обращения A (Accessed) устанавливается в"1" при любом обращении к сегменту. Используется операционной системой для того, чтобы отслеживать сегменты, к которым дольше всего не было обращений.

Пусть, например, 1 раз в секунду операционная система в дескрипторах всех сегментов сбрасывает бит А. Если по прошествии некоторого времени необходимо загрузить в оперативную память новый сегмент, места для которого недостаточно, операционная система определяет"кандидатов" на то, чтобы очистить часть оперативной памяти, среди тех сегментов, в дескрипторах которых бит А до этого момента не был установлен в"1", то есть к которым не было обращения за последнее время.

Поле типа в байте доступа определяет назначение и особенности использования сегмента. Если бит S (System - бит 4 байта доступа) равен 1, то данный дескриптор описывает реальный сегмент памяти. Если S = 0, то этот дескриптор описывает специальный системный объект, который может и не быть сегментом памяти, например, шлюз вызова, используемый при переключении задач, или дескриптор локальной таблицы дескрипторов LDT. Назначение битов <3...0> байта доступа определяется типом сегмента (рис. 3.4).


Рис. 3.4. Формат поля типа байта доступа

В сегменте кода: бит подчинения, или согласования, C (Conforming) определяет дополнительные правила обращения, которые обеспечивают защиту сегментов программ. При C = 1 данный сегмент является подчиненным сегментом кода. В этом случае он намеренно лишается защиты по привилегиям. Такое средство удобно для организации, например, подпрограмм, которые должны быть доступны всем выполняющимся в системе задачам. При C = 0 - это обычный сегмент кода; бит считывания R (Readable) устанавливает, можно ли обращаться к сегменту только на исполнение или на исполнение и считывание, например, констант как данных с помощью префикса замены сегмента. При R = 0 допускается только выборка из сегмента команд для их выполнения. При R = 1 разрешено также чтение данных из сегмента.

Запись в сегмент кода запрещена. При любой попытке записи возникает программное прерывание.

В сегменте данных:

  • ED (Expand Down) - бит направления расширения. При ED = 1 этот сегмент является сегментом стека и смещение в сегменте должно быть больше размера сегмента. При ED = 0 - это сегмент собственно данных (смещение должно быть меньше или равно размеру сегмента);
  • бит разрешения записи W(Writeable). При W = 1 разрешено изменение сегмента. При W = 0 запись в сегмент запрещена, при попытке записи в сегмент возникает программное прерывание.

В случае обращения за операндом смещение в сегменте формируется микропроцессором по режиму адресации операнда, заданному в команде. Смещение в сегменте кода извлекается из регистра - указателя команд EIP.

Сумма извлеченного из дескриптора начального адреса сегмента и сформированного смещения в сегменте дает линейный адрес (ЛА).

Если в микропроцессоре используется только сегментное представление адресного пространства, то полученный линейный адрес является также и физическим.

Если помимо сегментного используется и страничный механизм организации памяти, то линейный адрес представляется в виде двух полей: старшие разряды содержат номер виртуальной страницы, а младшие смещение в странице. Преобразование номера виртуальной страницы в номер физической проводится с помощью специальных системных таблиц: каталога таблиц страниц (КТС) и таблиц страниц (ТС). Положение каталога таблиц страниц в памяти определяется системным регистром CR3. Физический адрес вычисляется как сумма полученного из таблицы страниц адреса физической страницы и смещения в странице, полученного из линейного адреса.

Рассмотрим теперь все этапы преобразования логического адреса в физический более подробно.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.