Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Принцип работы осевого компрессора





Работа осевого компрессора основывается на том же принципе, что и центробежного – он преобразовывает кинетическую энергию в энергию давления (потенциальную). Однако способ преобразования другой.

Осевой компрессор, показанный на рис. 3.2, состоит из нескольких рядов вращающихся (роторных) лопаток аэродинамической формы, перемежающихся рядами неподвижных (статорных) диффузорных лопаток, также имеющих аэродинамический профиль.

Ступень состоит из одного ряда роторных лопаток, закрепленных на дисках барабана ротора, и следующего ряда статорных лопаток, закрепленных на внешнем корпусе компрессора.

У ротора и статора межлопаточное пространство формирует расширяющиеся каналы.

Турбина вращает с высокой постоянной скоростью ротор компрессора, происходит преобразование добавочной механической энергии в кинетическую (скорость) и потенциальную (давление).

В статоре давление увеличивается за счет преобразования кинетической энергии в потенциальную. Этот процесс показан на рис. 3.2.

Простыми словами, ступень ротора выполняет ту же работу, что и крыльчатка центробежного компрессора, а статорную ступень можно сравнить с диффузором центробежного компрессора. Степень повышения давления в каждой отдельной ступени весьма мала: от 1,1 до 1,2:1. Это означает, что первая ступень может повысить давление только на 3 psi. Вследствие этого, для получения высоких степеней сжатия, требуемых для современных авиационных двигателей, в одном каскаде могут использоваться много ступеней (рис. 3.3), и двигателей может иметь до трех каскадов. Этот метод весьма эффективен, например, в двигателе RB 211 можно получить степени повышения давления до 35:1. У данного двигателя величина повышения давления в последней ступени может достигать 80psi. Высокие давления могут приводить к повышению температуры на выходе компрессора до 600°C.



 

Рис. 3.2. Изменения давления и скорости по тракту осевого компрессора

В настоящее время в некоторых двигателях применяется комбинация осевого и центробежного компрессора.

Рис. 3.3. Однокаскадный компрессор

 

Поддержание осевой скорости воздушного потока

Пространство между барабаном ротора и внешним корпусом компрессора называется кольцевым воздушным каналом. Для поддержания осевой скорости воздуха при сжатии до меньшего объема кольцевой канал должен сужаться.

Это постепенное сужение получается с помощью придания конической формы либо внешнему корпусу компрессора, либо барабану ротора, а в некоторых случаях и комбинации этих методов. Это показано на рис. 3.3.

 

Управление расходом воздуха

Увеличение степени повышения давления компрессора прогрессивно усложняет обеспечение его эффективной работы во всем диапазоне частот. Это обусловлено фактом, что степень повышения давления в двигателе падает при падении частоты вращения компрессора. Поэтому при замедлении двигателя, объем поглощаемого воздуха увеличивается, т.к. он не сжимается с прежней силой.

Увеличенный объем воздуха в секции КВД осложняет его прохождение через доступное пространство, скорость потока снижается, и в некоторых случаях может вызвать запирание и турбулентность.

Такое снижение скорости происходит по всей длине компрессора и может вызвать феномен под названием срыв потока, который, в случае несвоевременного выявления, может усугубиться и перерасти в помпаж, ситуацию, когда, в худшем случае, поток воздуха в двигателе мгновенно меняет направление на обратное.

 

Срыв потока

 

Угол атаки лопатки компрессора складывается из осевой скорости воздуха, огибающего лопатку, и скорости ее вращения.

Эти две скорости складываются и образуют вектор, который дает фактический угол атаки воздушного потока на лопатке.

Срыв потока компрессора можно описать как дисбаланс между двумя скоростями, который может произойти по разным причинам, ниже перечислены некоторые из них:

a) Чрезмерный расход топлива, вызванный резким разгоном двигателя (осевая скорость понижается из-за увеличения обратного давления в камере сгорания).

b) Работа двигателя выше или ниже расчетных параметров RPM (увеличение или уменьшение скорости вращения лопатки компрессора).

c) Турбулентность или нарушение воздушного потока в воздухозаборнике (уменьшается осевая скорость).

d) Загрязненные или поврежденные компоненты компрессора (снижение осевой скорости из-за снижения степени повышения давления).

e) Загрязненная или поврежденная турбина (потеря мощности на привод компрессора вызывает снижение осевой скорости из-за снижения степени повышения давления).

f) Слишком бедная топливно-воздушная смесь из-за резкого замедления двигателя (осевая скорость увеличивается из-за уменьшения обратного давления в камере сгорания).

 

Любое из перечисленных выше условий может привести к срыву потока в компрессоре, а когда это произойдет, возникнет частичное обрушение воздушного потока в двигателе.

Индикаторами срыва потока в компрессоре является увеличение уровня вибрации двигателя и повышение температуры выхлопных газов (EGT).

Последний эффект (увеличение EGT) вызывает факт уменьшения поступления воздуха в камеры сгорания, соответственно, уменьшение количество воздуха на охлаждение продуктов сгорания, выхлопных газов.

Срыв потока компрессора является прогрессирующим феноменом, и теоретически может начаться на одной лопатке, ухудшая работу всей ступени, а затем, если не принять своевременных мер по локализации, охватывает весь двигатель.

 

Помпаж

Прогрессивное ухудшение ситуации приведет к полному обрушению потока в двигателе, называемому помпаж. В некоторых случаях это может вызвать мгновенное реверсирование газов в двигателе с вырыванием воздуха из воздухозаборника, сопровождаемым громким хлопком. При возникновении помпажа дроссель соответствующего двигателя нужно закрывать медленно.

Такую ситуацию наиболее часто вызывают неисправности или недостатки обслуживания топливной системы, а в чрезвычайных ситуациях могут прикладываться настолько высокие изгибные нагрузки на лопатки ротора компрессора, что они входят в зацепление с лопатками статора с потенциальными катастрофическими последствиями.

Помимо громкого шума, обычно сопровождающего помпаж, существует большой рост EGT, а результирующая потеря тяги может вызвать рыскание самолета.

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.