Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Генез электрокардиограммы. Особенности проведения возбуждения по миокарду.





Функционирование сердца сопровождается электрической активностью, вследствие чего в организме создается электрическое поле. Поэтому два электрода, приложенные к разным участкам тела, регистрируют разность потенциалов. Зависимость от времени разности потенциалов, возникающая при функционировании сердца называется электрокардиограммой (ЭКГ). Таким образом, электрокардиография позволяет определить численные значения разности потенциалов в любой момент времени. Основными задачами изучения ЭКГ являются: 1) выяснение механизма возникновения электрограммы; 2) диагностическая – выявление состояния сердца по характеру ЭКГ. Периодическая деятельность сердца осуществляется благодаря наличию проводящей системы. Проводящая система сердца начинается синусовым узлом, расположенным в верхней части правого предсердия. В узле находятся два вида клеток: Р- клетки, генерирующие электрические импульсы для возбуждения сердца и Т- клетки, преимущественно осуществляющие проведение импульсов от синусового узла к предсердиям. Основной функцией синусового узла является генерация электрических импульсов нормальной периодичности, составляющей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.

Возбуждение синусового узла не отражается на обычной ЭКГ. После латентного периода, продолжающегося несколько сотых долей секунды, импульс из синусового узла достигает миокарда предсердий. Возбуждение охватывает сразу всю толщу миокарда предсердий. На ЭКГ возбуждению предсердий соответствует возникновение Р зубца. Скорость проведения возбуждения по ним составляет 1 м/с. В предсердиях имеется небольшое количество клеток, способных вырабатывать импульсы для возбуждения сердца, однако в обычных условиях эти клетки не функционируют. Из предсердий импульс попадает в атриовентрикулярный узел, расположенный в нижней части правого предсердия справа от межпредсердной перегородки рядом с устьем коронарного синуса. На уровне атриовентрикулярного узла волна возбуждения значительно задерживается до 5 - 20 см/с, что обусловлено его анатомическими особенностями. Это создает возможность для окончания возбуждения и сокращения предсердий до того, как начнется возбуждение желудочков. Атриовентрикулярный узел называют автоматическим центром второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.

От атриовентрикулярного узла отходит пучок Гиса, разделяющийся на правую и левую ножки, которые направляются к мышцам правого и левого желудочков, к которым они передают возбуждение по волокнам Пуркинье. Моменту возбуждения желудочков на ЭКГ соответствует комплекс QRS. Фазе реполяризации желудочков соответствует на ЭКГ возникновение Т – зубца. Ножки пучка Гиса и волокна Пуркинье являются автоматическим водителем ритма третьего порядка, вырабатывают 15 - 30 импульсов в минуту. Скорость распространения возбуждения в ветвях и ножках пучка Гиса составляет 3 - 4 м/с. В норме существует только один водитель ритма, дающий импульсы для возбуждения всего сердца - синусовый узел. Автоматические центры второго и третьего порядка проявляют свою автоматическую функцию только в патологических условиях - при понижении автоматизма синусового узла или при повышении их автоматизма. Автоматические центры третьего порядка становятся водителями ритма только при одновременном поражении автоматических центров первого и второго порядка или значительном повышении автоматизма центра третьего порядка.

Теория отведения Эйнтховена.

Электрокардиография основывается на теории отведений Эйнтховена, которая позволяет судить о потенциалах сердца по потенциалам, снятым с поверхности тела.

Сердце - электрический диполь, который находится в проводящей среде. Вектор электрического момента характеризует работу сердца и образует эквипотенциальные (то есть равной напряжённости) поверхности.

Эйнтховен сформулировал три постулаты, которые и легли в основу созданной им системы отведений:

1. Рассматривать генератор сердечной ЭДС как точечный диполь.

2. Рассматривать человеческое тело по отношению к этому диполю как однородную проводящую среду.

3. Считать, что точечный диполь расположен в центре равностороннего треугольника, образованного двумя руками и левой ногой.

Эйнтховен предложил для записи ЭКГ 3 стандартных, или классических, отведения, это двухполюсные отведения, регистрирующие разность потенциалов между двумя точками тела. 1-е отведение - между двумя руками, 2-е -правая рука - левая нога, 3-е - левая рука - левая нога.

Векторэлектрокардиография.

Электрический вектор сердца за один сердечный цикл описывает сложную пространственную кривую. Метод электрокардиографии состоит в регистрации электрического вектора сердца на протяжении кардиоцикла. Траектория перемещения конца электрического вектора сердца в трехмерном пространстве в течение кардиоцикла называется векторэлектрокардиограммой. Векторкардиограмма может быть представлена набором кривых, описываемых концом проекции вектора дипольного момента эквивалентного диполя на какую-либо плоскость в течении кардиоцикла. Если сделать запись ЭКГ в двух взаимно перпендикулярных плоскостях (например, саггитальной и фронтальной) то они будут отличаться по форме и направлению, т.к. являются разными проекциями одного процесса. При их сложении (это делает прибор вектор-электрокардиограф) образуется сложная фигура по типу фигуры Лиссажу, которая может отражать функциональное состояние сердца, его проводящих и возбудимых тканей. Измеряя потенциалы f0 на поверхности тела и определяя соответствующим образом r и a, легко определить электрический вектор сердца D0, хотя действительные значения этого вектора остаются неизвестными. По данным таких измерений максимальное значение модуля вектора сердца составляет около 2 · 10-5 А · м. В векторной электрокардиографии регистрируют два вида кривых, характеризующих вектор дипольного момента эквивалентного диполя сердца: 1) пространственная векторная электрокардиограмма (ВЭКГ), представляющая собой траекторию конца вектора D0 в трехмерном пространстве в течение кардиоцикла; 2) плоские векторные электрокардиограммы (петли) - кривые, описываемые в течение кардиоцикла концом проекции вектора дипольного момента эквивалентного диполя на какую - либо плоскость. На практике обычно имеют дело с плоскими ВЭКГ. Для исследования ВЭКГ разработано несколько систем отведений, отличающихся по числу и расположению отводящих электродов на поверхности тела, выбору плоскостей для получения плоских ВЭКГ. Плоские ВЭКГ чаще всего анализируют в декартовой системе координат с началом, расположенным в геометрическом центре желудочков сердца или в центре среднего горизонтального (трасверсального) сечения грудной клетки. Направление осей относительно тела испытуемого: х - справа налево; у - сверху вниз; z - спереди назад. Плоские ВЭКГ получают в проекциях на горизонтальную, фронтальную и сагиттальные плоскости. При многих болезнях сердца форма плоских ВЭКГ резко изменяется, поэтому это используется в диагностических целях.

Интерференция света.

Интерференцией света называется такое сложение световых волн, в результате которого образуется устойчивая картина их усиления и ослабления. В обычных условиях часто встречается наложение световых волн от различных источников, но интерференция не наблюдается. Обязательным условием получения интерференции является когерентность источников световых волн. Когерентными называются такие источники света, для которых сдвиг фаз между испускаемыми ими волнами остается неизменным. Когерентные волны получают, “расщепляя” световую волну, идущую от источника. Такой способ применяется в методе Юнга, который состоит в том, что на пути сферической волны, идущей от источника S, устанавливается непрозрачная преграда с двумя щелями. Точки волновой поверхности, дошедшей до преграды становятся центрами когерентных вторичных волн, поэтому щели можно рассматривать как когерентные источники.

Чтобы понять каким образом возникает интерференционная картина, рассмотрим рисунок 1. На нем изображены волны длиной l, проходящие через щели S1 и S2 на расстоянии d одна от другой. За щелями волны распространяются по всем направлениям, но на рисунке показаны только в одном направлении. Из рисунка видно, что дополнительное расстояние, проходимое нижним лучом, равно d·sinq.

Усиливающая интерференция наблюдается на экране, если величина d·sinq равна целому числу длин волн: d·sinq = ml, m=0,1,2,…(усиливающая интерференция).

Значение m называется порядком интерференционной полосы.

Ослабляющая (гасящая) интерференция наблюдается в том случае, когда разность хода

d·sinq равна 1/2; 3/2, и т.д длин волн:

d·sinq = (m + ½)l, m=0,1,2,…(ослабляющая интерференция).


Рисунок 1. Интерференция света от двух щелей.

 







ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.