|
Принципы и методы генетического анализа.Генетическим анализом мы называем систему опытов, наблюдений и вычислений, имеющих целью разложение свойств (признаков) организма на отдельные наследственные элементы, отдельные признаки, и изучение свойств соответствующих им генов. С его помощью исследуется качественный и количественный состав генотипа, проводится анализ его. структуры и функционирования. Задачи генетического анализа можно коротко сформулировать как определение системы генотипа организма или генотипической структуры популяции. Очень часто пытаются сравнить генетический анализ с качественным анализом в химии, но добавляют при этом, что генанализ значительно сложнее, так как химик имеет возможность работать с чистыми реактивами (элементами), генетик же имеет дело со сложной системой генотипа. Методы генанализа очень разнообразны, но основным является гибридологический, или метод скрещивания. Гибридологический анализ, основы которого разработал основатель современной генетики Г. Мендель, основан на следующих принципах. 1. Использование в качестве исходных особей (родителей), форм, не дающих расщепления при скрещивании, т.е. константных форм. 2. Анализ наследования отдельных пар альтернативных признаков, то есть признаков, представленных двумя взаимоисключающими вариантами. 3. Количественный учет форм, выщепляющихся в ходе последовательных скрещиваний и использование математических методов при обработке результатов. 4. Индивидуальный анализ потомства от каждой родительской особи. 5. На основании результатов скрещивания составляется и анализируется схема скрещиваний. В генетическом анализе используются скрещивания в последовательном ряду поколений: Fl(F2, F3 и т. д. Возвратные скрещивания (Fb)—это скрещивания, гибрида Fi с одной из родительских форм (Р). Особое значение имеет анализирующее скрещивание — скрещивание гибрида Fi (или любого организма неизвестного происхождения) с гомозиготной рецессивной формой. Цитогенетические методы – это, в первую очередь, методы изучения хромосом: подсчет их числа, описание структуры, поведения при делении клетки, а также связь между изменением структуры хромосом с изменчивостью признаков. Они заключаются в цитологическом анализе генетических структур и явлений на основе гибридологического анализа с целью сопоставления генетических явлений со структурой и поведением хромосом и их участков (анализ хромосомных и геномных мутаций, построение цитологических карт хромосом, цитохимическое изучение активности генов и т. п.). На основе популяционного метода изучают генетическую структуру популяций различных организмов: количественно оценивают распределение особей разных генотипов в популяции, анализируют динамику генетической структуры популяций под действием различных факторов (при этом используют создание модельных популяций). Молекулярно-генетические – биохимические и физико-химические – методы включают разнообразные, направленные на изучение структуры и функции генматериала и направлен на выяснение этапов пути «ген – признак» и механизмов взаимодействия различных молекул на этом пути. Мутационные методы позволяет (на основе всестороннего анализа мутаций) установить особенности, закономерности и механизмы мутагенеза, помогает в изучении структуры и функции генов. Генеалогический метод позволяет проследить наследование признаков в семьях. Используется для определения наследственного или ненаследственного характера признака, доминантности или рецессивности, картирования хромосом, т. е. для установления принадлежности гена, кодирующего данный признак, к определенной группе сцепления, сцепленности с Х- или Y-хромосомами, для изучения мутационного процесса, особенно в случаях, когда необходимо отличить вновь возникшие мутации от тех, которые носят семейный характер, т. е. возникли в предыдущих поколениях. Как правило, генеалогический метод составляет основу для заключений при медико-генетическом консультировании (если речь не идет о хромосомных болезнях). Близнецовый метод, заключающийся в анализе и сравнении изменчивости признаков в пределах различных групп близнецов, позволяет оценить относит, роль генотипа и внешних условий в наблюдаемой изменчивости. Особенно важен этот метод при работе с малоплодовитыми организмами, имеющими поздние сроки наступления половой зрелости (например, крупный рогатый скот), а также в генетике человека. В генетическом анализе используют и многие другие методы: онтогенетический, иммуногенетический, сравнительно-морфологические и сравнительно-биохимические методы, разнообразные математические методы и т. д. Моногибридное скрещивание. Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков. Признак —любая особенность организма, по которой можно различить две особи. У растений это форма венчика (например, симметричный—асимметричный) или его окраска (пурпурный—белый) и т. д. Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток, тканей и органов, называется фенотипом. Признаки и свойства организма проявляются под контролем наследственных факторов, т. е. генов. Совокупность всех генов организма называют генотипом. Примерами моногибридного скрещивания, проведенного Г. Менделем, могут служить скрещивания гороха с такими хорошо заметными альтернативными признаками, как гладкая и морщинистая поверхность семян, желтая и зеленая их окраска и др. Единообразие гибридов первого поколения (первый закон Менделя). При скрещивании гороха с желтой и зеленой окраской Мендель обнаружил, что у всех гибридных растений первого поколения (F1) окраска оказалась желтой. При этом зеленая окраска не проявлялась. Из рисунка видно, что в каждой гамете родительских особей будет по одному гену: в одном случае A, в другом — а. Таким образом, в первом поколении все соматические клетки будут гетерозиготными — Aa. В свою очередь, гибриды первого поколения с равной вероятностью могут образовывать гаметы A или a. Случайные комбинации этих гамет при половом процессе могут дать следующие варианты: AA, Aa, aA, aa. Первые три растения содержащие ген A, по правилу доминирования будут иметь желтые горошины, а четвертое — рецессивная гомозигота aa — будет иметь зеленые горошины. Следовательно, у гибридов первого поколения из пары родительских альтернативных признаков проявляется только один, а признак другого родителя как бы исчезает. Явление преобладания у гибридов F1 признаков одного из родителей Мендель назвал доминированием, а соответствующий признак — доминантным. Признаки, не проявляющиеся у гибридов F1 он назвал рецессивными. Поскольку все гибриды первого поколения единообразны, это явление было названо К. Корренсом первым законам Менделя, или законом единообразия гибридов первого поколения, а также правилом доминирования. Закон единообразия гибридов первого поколения (первый закон Менделя) — при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей. Закон расщепления (второй закон Менделя) — при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1. Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|