Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Общие сведения о разбивочных работах





 

Разбивка запроектированных зданий или сооружений заключается в указании на местности их характерных точек и линий, по которым в процессе строительства при помощи простых приспособлений определяют положение всех частей зданий или сооружений. Способы перенесения точек сооружений в натуру аналогичны способам определения положения точек при съемке (полярных и прямоугольных координат, прямой угловой засечки и т. п.).

Разбивка ведется с пунктов геодезической основы, созданной еще при съемке местности для проектирования или до начала строительства. Величины необходимых разбивочных элементов проекта (углов и длин линий) предварительно определяют графически или аналитически по проектному плану.

Выбор метода подготовки элементов проекта зависит от формы, размеров, материала, способа ведения строительных работ, определяющих вместе точность возведения сооружения. Разбивочный чертеж с указанием на нем необходимых данных (дирекционных углов, углов, длин линий, опорных и определяемых точек) подготавливают заранее и вычерчивают на чертежной бумаге, подшиваемой затем в специальные альбомы.

Способ разбивочных работ выбирают в зависимости от необходимой точности разбивки точки, наличия геодезических приборов; условий местности, способа ведения строительных работ, квалификации персонала и т. и. При этом различают метод непосредственной разбивки, состоящий в непосредственном построении разбивочных величин с заданной точностью, и метод редуцирования, основанный на предварительной разбивке точки, близкой к проектной, с последующим ее смещением в проектное положение. Метод непосредственной разбивки применяют, как правило, на работах меньшей точности, а метод редуцирования - на работах, требующих высокой точности разбивки (мостов, плотин и т. п.).

1. Способ полярных координат

Для перенесения в натуру проектной точки P строят в опорном пункте A полярный угол b, откладывают расстояние S и фиксируют точку (рис. 87).

Рисунок 87 - Способ полярных координат

Точность разбивки этой точки без учета погрешностей исходных данных определяют по формуле:

,

где ms - средняя квадратическая погрешность отложения расстояния S;

mb - средняя квадратическая погрешность построения угла b;

me,me1 - средние квадратические смещения разбиваемой точки, обусловленные соответственно неточностью центрирования теодолита и визирной марки на исходной стороне;

mф - средняя квадратическая погрешность фиксации разбиваемой точки.

При условии равного влияния погрешностей угловых и линейных измерений имеем:

; .

 

2. Способ створно-линейных координат

Этот способ применяют в случае, если разбиваемая точка находится на опорной линии между ее концами или на ее продолжении. Теодолит и визирную цель размещают на концах опорной линии и по направлению визирования трубой теодолита откладывают проектное расстояние S и фиксируют точку C (рис. 88,а). Погрешность разбивки точки определяют по формуле:

;

где mств - погрешность створа;

mS - погрешность построения длины S;

mф - погрешность фиксации точки;

mu - СКО исходных пунктов;

mвиз - СКО фокусирования (визирования).

а) разбиваемая точка на опорной линии

Рисунок 88 – Способ створно-линейных координат

Если разбиваемая точка находится на продолжении опорной линии (рис. 88,б), то створ задается либо поворотом трубы через зенит, либо построением угла в 180° (в обоих случаях при двух положениях круга и аналогично полярному способу). Более производительный и точный первый способ.

б) точка вне опорной линии.

Если точку P разбивают на продолжении створа AB, то погрешность построения самого створа возрастает пропорционально его длине, поэтому применять этот способ на большом протяжении не рекомендуется.

Пример. Требуется разбить точку P в створе линии строительной сетки длиной 200 м, имеющей предельную относительную погрешность 1: 10 000, на расстоянии 75 м при помощи теодолита типа Т-2 в комплекте с визирными марками, снабженными оптическими центрирами (линейные элементы центрировки и редукции e = e1 = 0.5 мм), и мерного прибора, обеспечивающего измерение линии с погрешностью mS = 5мм.

В результате расчета получено:

me=0,2 мм;

; me1=0,1 мм;

;

где b - длина створа;

30² - средняя разрешающая способность невооруженного глаза;

v - увеличение зрительной трубы.

При фиксации точки с погрешностью mф = 0.5 мм получим:

мм.

Здесь влияние отложения длины оказалось доминирующим.

 


1.3.2.3. Способ прямоугольных координат

В основу способа положена разбивка проектной точки P от линии геодезической основы AB, чаще - от линии строительной сетки, полигонометрии или теодолитного хода (рис. 89) по прямоугольным координатам x и y относительно точки A, взятой за начало частной системы координат, и линии AB - в качестве частной оси абсцисс.

Рисунок 89 - Разбивка точки способом прямоугольных координат

 

Прямоугольные координаты определяют по формулам:

где XA, XP, YA,YP - абсолютные координаты исходной и проектной точек;

a0 - дирекционный угол опорной линии AB.

Знаки ординат указывают направление откладывания их от створных точек линии AB: при положительной - вправо, при отрицательной - влево. Если абсцисса x отрицательная, то ее откладывают от точки A в противоположном направлении линии AB.

Для разбивки точки теодолит устанавливают в пункте А и ориентируют по линии AB при помощи визирной цели, установленной в пункте B. Затем вдоль линии визирования откладывают расстояние x и фиксируют створную точку C. Устанавливают в ней теодолит, строят прямой угол при двух положениях круга с выбором средней точки и, отложив ординату y, фиксируют проектную точку P.

Среднюю квадратическую погрешность точки P определяют по формуле:

Здесь в скобки заключены погрешности установок и фиксации, влияние которых невелико. Поэтому, применив к отдельным членам подкоренного выражения принцип комбинированного влияния (равного и неравного в зависимости от величины составляющих), получим:

где T - знаменатель предельной относительной погрешности линейных измерений при откладывании расстояний;

m - некоторая вспомогательная погрешность;

v - коэффициент соотношения погрешностей, принимаемый в зависимости от имеющихся инструментов и условий производства работ (обычно v = 2, 2.5 или 3).

Пример. Определить, с какой погрешностью следует производить разбивку проектной точки с прямоугольными координатами x = 80 м и y = 60 м, если ее среднее квадратическое отклонение от проекта не должно превышать mр = 25 мм.

Приняв v = 2, получим T ³ 3 000; mb < 57²; me = me1 = mф = 3.4 мм. По этим данным выбирают приборы для производства работ: теодолит 30² точности, рулетку, тонкую веха. Приборы центрируют средним нитяным отвесом, точки фиксируют шпилькой на колышке.

1.3.2.4. Способ полярно- прямоугольных координат

Этот способ является модификацией способа прямоугольных координат с той лишь разницей, что координаты строят на вспомогательной линии AB', составляющей угол j с линией геодезической основы AB.

Например, по условиям строительства необходимо разбить ряд точек P1, P2,..., Pn, находящихся на одной прямой или нескольких параллельных прямых с заданным дирекционным углом a (рис. 90). При известных дирекционных углах a и a0 направлений AB и AB' определяют угол j = a - a0. Откладывая его от направления AB, строят вспомогательную линию AB'. Она является базовой для построения прямоугольных координат x и y пунктов застройки, найденных по формулам:

с использованием дирекционного угла a линии AB'.

 

Рисунок 90 - Способ полярно-прямоугольных координат

Применение способа полярно-прямоугольных координат позволяет сократить длины ординат и создать лучшие условия для разбивочных работ. Точность разбивки определяют по формуле:

с учетом погрешности разворота линии АВ¢, выраженной зависимостью:

где mj - погрешность построения угла j.

 

1.3.2.5. Способ прямой угловой засечки

Этот способ применяется для разбивки удаленных и труднодоступных объектов - мостовых переходов и гидротехнических сооружений. При этом, положение проектной точки P с известными координатами определяют в натуре путем построения двух проектных углов b1 и b2 соответственно в двух твердых пунктах A и B (рис. 91).

 

Рисунок 91 - Прямая угловая засечка

 

На точность разбивки влияют следующие источники: погрешность собственно прямой засечки и погрешность, обусловленная неточностью фиксации линий засечки (более подробно рассмотрено в вопросе мостовой триангуляции).

 

1.3.2.6. Способ замкнутого треугольника

Способ используется для уточнения положения точки, разбиваемой прямой угловой засечкой, главным образом при отсутствии дополнительных опорных пунктов.

Теодолит устанавливают в найденной точке и измеряют третий угол треугольника. Распределив невязку поровну или в соответствии с весами измеренных углов, определяют координаты точки Р (рис. 92). Сравнив их с проектными, находят поправки - редукции, на которые смещают первоначально найденную точку в проектное положение.

Рисунок 92 - Вставка точки в треугольник

 

Для оценки точности ее определения применяют формулу Ф. Красовского (без учета исходных данных).

 

При разбивке точки с трех пунктов (при вставке точки в треугольник) применяют формулу проф. К.Л. Проворова:

где - углы засечки соответственно между визирными лучами 2 и 3, 1 и 3, 1 и 2;

- длины визирных лучей с пунктов 1, 2, 3.

 

1.3.2.7. Способ линейной засечки

Способ применяется, в основном, для разбивки точек сооружений по расстояниям S1 и S2, которые не превышают длины мерных приборов. Свето-, радио- и оптические дальномеры целесообразно применять по методу редуцирования. Разбивка состоит в нахождении точки пересечения дуг, построенных мерными приборами длиной S1 и S2, поэтому ее можно осуществлять двумя или поочередно одним мерным прибором (рис. 93).

Рисунок 93 - Построение точки способом линейной засечки

Точность разбивки определяют по формуле:

где - погрешности откладывания длин S1 и S2;

- погрешность фиксации точки.

1.3.2.8. Способ створной засечки

Способ заключается в определении положения точки на пересечении двух створов, составляющих между собой угол засечки g. Обычно, створы задают теодолитами, проволоками или струнами. Благодаря простоте применения и высокой точности, этот способ широко применяется в промышленном строительстве при пересечении створов под прямым углом (g=90°).

По характеру проявления погрешностей, способ близок к способу прямой угловой засечки, но точнее его. Погрешность разбивки точки способом створной засечки определяют по формуле:

где - погрешности построения створов.

 

1.3.2.9. Способ обратной угловой засечки

Способ применяется для уточнения положения приближенной точки сооружений при помощи измеренных на ней горизонтальных углов b1, b2, b3 на три опорные пункта (рис. 94) с последующим редуцированием (при разбивке центров мостовых опор, бычков плотин и других сооружений).

Рисунок 94 - Обратная засечка

Погрешность положения точки определяют по формулам:

где - расстояния от опорных пунктов;

- дирекционные углы направлений засечки;

- расстояния между опорными пунктами 1 и 2, 2 и В;

- угол на пункте В между сторонами опорной сети.

Общую редукцию (смещение точки Р в проектное положение Р0 и ее ориентировку) определяют по разности абсцисс и ординат указанных точек. В связи с большим объемом вычислений при малых величинах смещений, целесообразно пользоваться дифференциальным методом.

Контроль определения осуществляется по четвертому опорному пункту. Необходимо помнить, что обратная засечка не имеет решения, если определяемая точка и все опорные точки находятся на проведенной через них окружности («опасная окружность»). По исследованиям, уход наружу и вовнутрь «опасной окружности» на расстояние 10% ее радиуса уже обеспечивает уверенное определение точки, так как сумма углов (j2 + b1 + b3)¹180°.

 

1.3.2.10. Способ проектного полигона

Способ применяется для разбивки вытянутых подземных и надземных сооружений - тоннелей, каналов, линий электропередачи (ЛЭП), трубопроводов, кабелей и т.п. Этот способ часто называют способом полигонометрии.

Сущность его заключается в последовательном применении полярного способа определения положения точек. Полигонометрический (теодолитный) ход исходит из пункта геодезической основы и включает в себя разбивочные точки сооружения (рис. 95).

Рисунок 95 – Способ проектного полигона

Ходы могут быть висячими и разомкнутыми. Точность измерения углов и длин линий в ходах определяется требованиями к точности разбивки сооружений. Расчет точности ведется по соответствующим формулам полигонометрии. Уравнивание проектного полигона сводится к перемещению его пунктов параллельно невязке и пропорционально удалению искомого пункта от начального. Если местоположение сооружения неизвестно, то полигонометрический ход прокладывают вблизи оси сооружения. После уравнивания хода разбивают точки сооружений из пунктов полигонометрического хода, например, полярным способом. Иногда полигонометрический ход заменяют другими видами геодезической основы - триангуляцией, трилатерацией или линейно-угловой сетью.

 

1.3.2.11. Разбивка точек способом редуцирования

При точных и высокоточных разбивочных работах, однократное построение разбивочных элементов (углов и длин линий) не обеспечивает достаточной точности, поэтому, применяют метод редуцирования.

Метод редуцирования заключается в смещении приближенной точки в проектное положение.

Основные этапы метода включают:

* предварительную разбивку приближенной точки

* точное измерение элементов разбивки для приближенной точки

* сравнивание их с проектными величинами и вычисление редукций (отклонений)

* смещение приближенной точки в проектное положение на основании вычисленных величин редукций.

Значение редукций удобно представлять прямоугольными или полярными координатами, и привязывать их к одному из направлений визирования с опорного пункта, которое принимается в качестве условной оси абсцисс. Направление смещения приближенной точки в проектное положение определяется знаком прямоугольных редукций rx и ry. По ним вычисляют угловой и линейный элементы общей редукции, привязанной к условной оси абсцисс по формулам:

Способ реализации редукций зависит от их величины: при r³200 мм применяется полярный способ с откладыванием угла теодолитом и расстояния- рулеткой. При r < 100-200 мм - способ прямоугольных координат с использованием координатной палетки.

Палетка изготавливается из прозрачного синтетического материала, например лавсана, размером 200x200 или 400x400 мм с сеткой 10x10 мм (рис. 96).

 

Рисунок 96 - Редукционная палетка

Рисунок 97 - Редуцирование точки при способе полярных координат

 

Для редуцирования палетка укладывается началом координат в приближенной точке и ориентируется по направлению условной оси абсцисс. Затем, на палетке откладывают величины редукций rx и ry с учетом их знаков. Проектная точка фиксируется на сооружении - металлической пластине знака, бетона и т. п. Основной недостаток палетки, укладываемой на земле, - трудность ориентирования ее по условной оси абсцисс, что приводит к ее развороту и, как следствие - к погрешностям редуцирования. Поэтому, удобнее пользоваться специальным геодезическим редукционным прибором (ГРП), разработанным в Киевском инженерно-строительном институте.

Прибор (ГРП) представляет собой двух координатный измерительный столик с втулкой подставки в середине для размещения визирной марки, отражателя дальномера, оптического центрира или теодолита. При помощи трех становых винтов столик прикрепляют к рамной головке специального штатива. Координатные оси столика по линии визирования ориентируют при помощи оптического визира с поворотным зеркалом. Подставка, закрепляющая приближенную точку, смещается двумя штурвалами. При этом, величина перемещения измеряется на шкалах координатного столика. Проектная точка сносится на рабочий горизонт (выше или ниже столика) при помощи оптического центрира или прибора вертикально визирования.

Для способа полярных координат (рис. 97) редукции имеют вид:

где - расстояния и горизонтальные углы к проектной Р0 и приближенной Р точкам сооружения.

Редукции rx и ry привязаны к точке Р и направлению АР, взятым условно за начало координат и положительное направление оси абсцисс.

Аналогично получается и в способе створно-линейных координат, однако здесь величину ry удобно свести к нулю перемещением подставки теодолита ГРП в поперечном направлении.

В способе прямоугольных координат, который является комбинацией способов створа и полярных координат, редуцирование рационально производить раздельно: сначала для створной, а затем - для конечной точки, аналогично полярному.

При разбивке точек сооружений 3-х лучевой прямой угловой засечкой, переносят в натуру приближенную точку Р (рис. 98), измеряют для нее углы b1, b2, b3. Сопоставляя их с проектными значениями b10, b20, b30 , вычисляют вспомогательные величины:

а затем и сами редукции:

 

где - проектные расстояния и дирекционные углы направлений засечек.

Рисунок 98 - Редуцирование точки в способе угловой засечки

 

Рисунок 99 - Редуцирование точки при обратной угловой засечке

 

Аналогичное положение имеем при створной засечке. Так как в промышленном и гражданском строительстве сворная засечка применяется с g=90°, то:

Реализация таких редукций при помощи ГРП очень проста, эффективна и точна.

Для прямой линейной засечки с трех пунктов (см. рис. 98) определяют следующие величины:

В обратной линейной засечке, когда исполнитель находится в разбиваемой точке, эти редукции меняют знак. Так, в случае однократной обратной угловой засечки (рис. 99) по разностям углов находят следующие величины:

где - вспомогательные величины, которые можно вычислить до начала полевых работ.

Редукции привязаны к среднему направлению Р-В, принятому в качестве условной оси абсцисс. Если используется четвертый опорный пункт, решение сводится к двум задачам. По указанным величинам упрощается и оценка точности редукций:

 

где - погрешность измерения угла;

- длины твердых сторон 1-2 и 2-3.

В способе обратной биполярной засечки, применяемой для введения приближенной точки С в створ линии АВ при отсутствии видимости между ее концами, определяют угол нестворности g=180°-b, где b - угол между направлениями на твердые пункты.

На рисунке 100 показано три случая решения задачи для смещения одной, двух и трех приближенных промежуточных точек С в створ при наличии взаимной видимости между ними и конечными пунктами створа. Необходимые редукции вычисляют по формулам:

 

Рисунок 100 - Способ обратных биполярных засечек

где r - редукции - перпендикуляры к направлению створа; [S0] - длина створа АВ.

Точность определения редукций зависит от степени приближения точки С к створу: чем ближе точка к створу, тем выше точность. Погрешность редукций выражается приближенной зависимостью:

 

где S - средняя длина луча визирования;

n - число промежуточных точек свора;

i - порядковый номер промежуточной точки в створе относительно его конечных пунктов;

- погрешность измерения угла нестворности.

Данный способ применяется при разбивке осей сооружений (определение точки их пересечения), трассировании ЛЭП, канатных дорог и т.п. Редукцию при всех способах разбивки вычисляют по простым формулам, без высокой точности (на счетной линейке). Вспомогательные величины (углы, дирекционные углы и расстояния) можно получить графически с плана с относительной погрешностью 1: 300. Высокая точность измерений требуется только для основных элементов, определяющих точность разбивки точек сооружений.

При избыточных измерениях определяют средневзвешенное (редко - среднее) значение редукций. В сложных системах рационально определять редукции из уравнивания измеренных величин, например, параметрическим методом.

 

Элементы разбивочных работ

 

1.3.4.1. Построение проектного угла

При построении на местности закреплена вершина угла А (рис. 101, а) и задана одна его сторона АВ. Задача заключается в определении направления и закреплении на местности стороны АС, расположенной под углом bп к стороне АВ.

а)

б)

 

Рисунок 101 - Схема построения проектного горизонтального угла:

а) с точностью теодолита; б) с повышенной точностью

 

Теодолит устанавливают над точкой А, визируют на точку В и берут отсчет b по горизонтальному кругу. Предвычисляют отсчет с = b + bп (если угол bп строят против часовой стрелки, то с = b - bп). Открепив алидаду, отсчет c устанавливают на горизонтальном круге и по центру сетки нитей трубы фиксируют точку С1. Аналогично строят угол bп при другом положении вертикального круга и фиксируют точку С2.

Отрезок С1 С2 делят пополам и фиксируют точку С. Угол ВАС принимают за проектный.

На точность построения угла кроме основных факторов, влияет погрешность фиксации точки С. Таким образом, общую погрешность построения угла можно вычислить по формуле:

где mв, mо, mц, mр, mф -средние квадратические погрешности соответственно визирования, отсчета по горизонтальному кругу, центрирования теодолита над вершиной угла, редукции визирной цели (установки визирной цели в точке В), фиксации точки С.

Условия обеспечения точности построения углов приведены в СНиПе 3.01.03 - 84. Например, для построения угла bп со средней квадратической погрешностью mb = ± 30" можно применить теодолит типа Т30, центрировать его оптическим или нитяным отвесом, точку С фиксировать карандашом на поверхности бетона.

При известной длине стороны АС =D погрешность положения точки С определится, как mс=mb×(D/r). Если mс не должна превышать допустимой проектной величины mcдоп, то погрешность построения угла не должна быть более mb доп. = mс доп. × (D/r) при той же величине D. В этом случае при построении угла с погрешностью, не превышающей mb доп. поступают так: предварительно построенный угол b измеряют n = t2Т /m2b доп. раз, где tТ - точность отсчетного приспособления, и вычисляют среднее значение угла bизм. Затем определяют угловую db = bизм.- bп и линейную dlb = D×(db/r) поправки (рис. 101, б).

Точку С перемещают в соответствующую сторону на величину dlb и фиксируют точку С0.

 

1.3.4.2. Построение проектного отрезка

От начальной точки А (рис. 102) в заданном направлении откладывают стальным мерным прибором расстояние, равное проектной длине dп и временно фиксируют конечную точку В1. Процесс откладывания расстояния аналогичен его измерению. Определяют нивелированием превышение h между точками А и В1 и измеряют температуру t прибора (если измерить ее невозможно, измеряют температуру воздуха).

Рисунок 102 - Схема построения проектного отрезка.

Вычисляют поправки в длину линии: за компарирование ddк, за температурное влияние ddt, за наклон линии ddh. Вычисляют суммарную поправку по формуле:

dd = ddк + ddt + ddh

и вводят ее с обратным знаком в линию АВ1. Если поправка с минусом, то линию АВ1 удлиняют на отрезок dd и фиксируют точку В (если с плюсом - линию укорачивают.) На точность построения проектного отрезка, кроме основных факторов, влияет также точность фиксации точек В1 и В.

Построение линий с повышенной точностью выполняют инварными мерными приборами, а также светодальномерами. Условия обеспечения точности построения проектных отрезков содержатся в приложении 2 СНиП 3.01.03 - 84.

Например, построение проектного отрезка с относительной погрешностью 1/3000 - 1/2000 можно выполнить стальной рулеткой типа ОПКЗ - 20 АНТ/10 с уложением ее в створ «на глаз». Для определения поправок, превышение h концов отрезка может быть оценено глазомерно, температура измерена термометром с погрешностью не более 5°С, средняя квадратическая погрешность компарирования рулетки - не более 1,5 мм, фиксация концов рулетки и конечной точки отрезка производиться карандашом.

 

1.3.4.3. Перенесение в натуру проектной отметки

Проектные отметки переносят в натуру, как правило, геометрическим нивелированием (рис. 103). Нивелир устанавливают примерно посредине между ближайшим репером и местом перенесения отметки, например, обноской (рис.103).

Для этого берут отсчет a по рейке, установленной на репере. Вычисляют горизонт прибора ГП по формуле ГП = HRp + a и, вычтя из ГП проектную отметку HRp, находят проектный отсчет b.

 

Рисунок 103 - Схема построения точки с проектной отметкой

Далее, рейку устанавливают у стойки обноски и перемещают по вертикали до тех пор, пока горизонтальная нить сетки зрительной трубы не совпадет с отсчетом b. В этот момент реечник фиксирует отметку Hпр, прочерчивая по пятке рейки риску на обноске.

Перенесение проектной отметки повторяют по красной стороне реек, также фиксируя риской на обноске отметку Hпр. Если риски не совпадут, определяют среднее положение и маркируют его. На точность перенесения в натуру проектных отметок, кроме основных погрешностей, влияет погрешность фиксации отметки риской.

Условия обеспечения точности перенесения в натуру отметок содержатся в СНиП 3.01.03 - 84. Например, для перенесения отметок со средней квадратической погрешностью 2 - 3 мм можно применить нивелир типа НЗ и шашечные рейки типа РН-3. При этом, высота визирной линии над препятствием не должна быть меньше 0,2 м, а неравенство плеч на станции - 7 м. Проектные отметки можно переносить в натуру также и теодолитами с компенсатором Т15К, Т5К, 2Т5К, а также теодолитами с уровнем при трубе.

 

1.3.4.4. Построение в натуре линий проектного уклона

Построение заключается в фиксировании в натуре нескольких (минимум двух) точек, определяющих положение линии с проектным уклоном i. Может быть несколько случаев решения этой задачи, в каждом из них расстояние d между точками известно (или его надо измерить).

Точка А с отметкой HА закреплена (рис. 104). Вычисляют отметку точки В по формуле

HВ =HА +i×d

и выносят ее в натуру. Точка А с проектной отметкой HА не закреплена. Как и в предыдущем случае, вычисляют отметку HВ, затем точки А и В выносят в натуру.

Рисунок 104 - Построение наклонного направления

 

Точка А закреплена, но ее отметка HА неизвестна. Нивелируя, берут отсчет a по рейке, установленной в точке А. Предвычисляют проектный отсчет b по формуле:

b=a + i×d

и по нему выносят точку В в натуру.

Этот вид разбивочных операций наиболее широко применяют при строительстве самотечных трубопроводов и в дорожно-строительных работах.

 

1.3.4.5. Построение створа

Створ - это направление, проходящее через две фиксированные точки и задаваемое каким-либо прибором (трубой теодолита, нивелира, биноклем, проволокой, струной и т. п.).

Основными погрешностями при построении створа являются:

· исходных пунктов mи

· центрирования теодолита mе

· редукции визирных марок mе1

· визирования зрительной трубой mвиз

· изменения фокусировки зрительной трубы mфок

Общую погрешность, без учета погрешности фиксации створной точки, определяют по формуле

По характеру действия все эти погрешности являются поперечными. Погрешностями исходных пунктов являются погрешности в положении знаков, закрепляющих створ. Необходимость учитывать эти погрешности возникает при анализе взаимного размещения двух точек, принадлежащих разным створам, например, при разбивке осей сооружений от обноски.

Среднее влияние погрешностей центрирования и редукции на положение створной точки выражается зависимостью:

где e, e1 - соответственно линейные элементы центрирования и редукции;

b - длина створа;

S - удаление створной точки от теодолита.

Визирными целями при фиксировании створа на строительной площадке служат шпильки, сварочные электроды, карандаши и т. п., обеспечивающие минимальные элементы редукции. В случае наблюдения верха вехи высотой 0,5 - 1,0 м, устанавливаемой в специальном треножнике, обеспечивают ее вертикальность. При отсутствии ветра вместо вехи используют тяжелый нитяный отвес.

Погрешность визирования учитывает наблюдение марки, находящейся в конце створа, и цели, устанавливаемой в створ опорной линии или на ее продолжении. Поэтому совместное влияние этих двух факторов будет определяться по формуле:

где 30" - средняя разрешающая способность невооруженного глаза (при хорошей видимости она составляет иногда 20", а при плохой - 40" и даже 60");

v - увеличение трубы теодолита.

Погрешность фокусировки обусловлена необходимостью изменять фокусировку трубы при наведении на марку и на цель, находящихся на разных расстояниях.

 

1.3.4.6. Построение наклонной плоскости

Построение наклонной плоскости осуществляется главным образом при вертикальной планировке площадок, проверке плоскостности строительных и машиностроительных деталей. При этом применяют теодолит с горизонтальной трубой или нивелир. Для построения плоскости необходимо иметь на ней по крайней мере три точки А, В, С с известными отметками, например HА, HВ, HС (рис. 105).

Рисунок 105 - Построение наклонной плоскости

(1, 2, 3 - подъемные винты прибора)

 

Прибор устанавливают в одной из опорных точек, например в А, так, чтобы два подъемных винта располагались перпендикулярно к линии АВ, а третий - на ней. Тогда, действуя третьим винтом, наклоняют трубу прибора до тех пор, пока отсчет по рейке, установленной в точке В, будет равным высоте прибора. Затем, направив трубу на точку С, поперечными наклонами прибора при помощи винтов 1 и 2 добиваются отсчета по рейке, равного высоте прибора. В связи с неточностью наклона прибора, эти операции повторяют еще 1 - 2 раза, т. е. выполняют последовательными приближениями.

В этом положении труба прибора описывает плоскость, параллельную заданной и отнесенную от нее на высоту прибора над исходными пунктами. Контроль осуществляется по четвертому пункту с заданной отметкой. Только после этого разрешается определять и закреплять промежуточные пункты в пределах площадки.

 

1.3.4.7. Построение отвесной плоскости

Отвесная плоскость, чаще всего, применяется для контроля вертикальности стен, панелей и т. п., а также для передачи осей на рабочие горизонты сооружений. При этом, используются способ коллимационной плоскости теодолита или приборы, механические и уровенные рейки-отвесы и лазерные приборы типа «Ротолайт» (США).

Для построения отвесной плоскости теодолит устанавливают на базовой линии и ориентируют по ней так, что при вращении зрительной трубы вокруг оси вращения ее визирная ось описывает отвесную плоскость. Точность построения плоскости зависит от систематических и случайных погрешностей процесса. Наиболее опасна здесь систематическая погрешность наклона оси вращения прибора, которая не исключается работой при двух положениях круга. С учетом случайных погрешностей погрешность проектирования точки отвесной плоскостью выражается зависимостью:

где mц, mнив, mвиз, mфик - погрешности соответственно центрирования, нивелирования теодолита, визирования им и фиксац







Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.