|
Как представляются в компьютере вещественные числа? ⇐ ПредыдущаяСтр 3 из 3
При их написании вместо запятой принято писать точку. Так, например, число 5 — целое, а числа 5.1 и 5.0 — вещественные. Для удобства отображения чисел, принимающих значения из достаточно широкого диапазона (то есть, как очень маленьких, так и очень больших), используется форма записи чисел с порядком основания системы счисления. Например, десятичное число 1.25 можно в этой форме представить так: 1.25*100 = 0.125*101 = 0.0125*102 =..., или так: 12.5*10–1 = 125.0*10–2 = 1250.0*10–3 =....
Если “плавающая” точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине. Из этого следует:
Такое, наиболее выгодное для компьютера, представление вещественных чисел называется нормализованным. Мантиссу и порядок q-ичного числа принято записывать в системе с основанием q, а само основание — в десятичной системе. Примеры нормализованного представления: Десятичная система Двоичная система 753.15 = 0.75315*103; -101.01 = -0.10101*211 (порядок 112 = 310) -0.000034 = -0.34*10-4; -0.000011 = 0.11*2-100 (порядок -1002 = -410) Вещественные числа в компьютерах различных типов записываются по-разному. При этом компьютер обычно предоставляет программисту возможность выбора из нескольких числовых форматов наиболее подходящего для конкретной задачи — с использованием четырех, шести, восьми или десяти байтов. В качестве примера приведем характеристики форматов вещественных чисел, используемых IBM-совместимыми персональными компьютерами:
Из этой таблицы видно, что форма представления чисел с плавающей точкой позволяет записывать числа с высокой точностью и из весьма широкого диапазона. При хранении числа с плавающей точкой отводятся разряды для мантиссы, порядка, знака числа и знака порядка:
Покажем на примерах, как записываются некоторые числа в нормализованном виде в четырехбайтовом формате с семью разрядами для записи порядка. 1. Число 6.2510 = 110.012 = 0,11001•211:
2. Число –0.12510 = –0.0012 = –0.1*2–10 (отрицательный порядок записан в дополнительном коде):
Как компьютер выполняет арифметические действия над нормализованными числами? К началу выполнения арифметического действия операнды операции помещаются в соответствующие регистры АЛУ. Сложение и вычитание При сложении и вычитании сначала производится подготовительная операция, называемая выравниванием порядков.
В результате выравнивания порядков одноименные разряды чисел оказываются расположенными в соответствующих разрядах обоих регистров, после чего мантиссы складываются или вычитаются. В случае необходимости полученный результат нормализуется путем сдвига мантиссы результата влево. После каждого сдвига влево порядок результата уменьшается на единицу. Пример 1. Сложить двоичные нормализованные числа 0.10111•2–1 и 0.11011*210. Разность порядков слагаемых здесь равна трем, поэтому перед сложением мантисса первого числа сдвигается на три разряда вправо:
Пример 2. Выполнить вычитание двоичных нормализованных чисел 0.10101*210 и 0.11101*21. Разность порядков уменьшаемого и вычитаемого здесь равна единице, поэтому перед вычитанием мантисса второго числа сдвигается на один разряд вправо:
Результат получился не нормализованным, поэтому его мантисса сдвигается влево на два разряда с соответствующим уменьшением порядка на две единицы: 0.1101*20. Умножение
Пример 3. Выполнить умножение двоичных нормализованных чисел: (0.11101*2101)*(0.1001*211) = (0.11101*0.1001)* 2(101+11) = 0.100000101*21000. Деление
Пример 4. Выполнить деление двоичных нормализованных чисел: 0.1111*2100: 0.101*211 = (0.1111: 0.101) * 2(100–11) = 1.1*21 = 0.11•210. Использование представления чисел с плавающей точкой существенно усложняет схему арифметико-логического устройства. Упражнения 4.1. Используя Правило Счета, запишите первые 20 целых чисел в десятичной, двоичной, троичной, пятеричной и восьмеричной системах счисления. 4.2. Какие целые числа следуют за числами:
4.3. Какие целые числа предшествуют числам:
4.4. Какой цифрой заканчивается четное двоичное число? Какой цифрой заканчивается нечетное двоичное число? Какими цифрами может заканчиваться четное троичное число? 4.5. Какое наибольшее десятичное число можно записать тремя цифрами: o а) в двоичной системе; o б) в восьмеричной системе; o в) в шестнадцатеричной системе? [ Ответ ] 4.6. В какой системе счисления 21 + 24 = 100? Решение. Пусть x — искомое основание системы счисления. Тогда 100x = 1 · x2 + 0 · x1 + 0 · x0, 21x = 2 · x1 + 1 · x0, 24x = 2 · x1 + 4 · x0. Таким образом, x2 = 2x + 2x + 5 или x2 - 4x - 5 = 0. Положительным корнем этого квадратного уравнения является x = 5. 4.7. В какой системе счисления справедливо следующее: o а) 20 + 25 = 100; o б) 22 + 44 = 110? [ Ответ ] 4.8. Десятичное число 59 эквивалентно числу 214 в некоторой другой системе счисления. Найдите основание этой системы. 4.9. Переведите числа в десятичную систему, а затем проверьте результаты, выполнив обратные переводы:
4.10. Переведите числа из десятичной системы в двоичную, восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы: а) 12510; б) 22910; в) 8810; г) 37,2510; д) 206,12510. 4.11. Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:
4.12. Переведите в двоичную и восьмеричную системы шестнадцатеричные числа: а) 2СE16; б) 9F4016; в) ABCDE16; г) 1010,10116; д) 1ABC,9D16. 4.13. Выпишите целые числа: o а) от 1011012 до 1100002 в двоичной системе; o б) от 2023 до 10003 в троичной системе; o в) от 148 до 208 в восьмеричной системе; o г) от 2816 до 3016 в шестнадцатеричной системе. [ Ответ ] 4.14. Для десятичных чисел 47 и 79 выполните цепочку переводов из одной системы счисления в другую:
4.15. Составьте таблицы сложения однозначных чисел в троичной и пятеричной системах счисления. 4.16. Составьте таблицы умножения однозначных чисел в троичной и пятеричной системах счисления. 4.17. Сложите числа, а затем проверьте результаты, выполнив соответствующие десятичные сложения:
4.18. В каких системах счисления выполнены следующие сложения? Найдите основания каждой системы:
4.19. Найдите те подстановки десятичных цифр вместо букв, которые делают правильными выписанные результаты (разные цифры замещаются разными буквами):
4.20. Вычтите:
4.21. Перемножьте числа, а затем проверьте результаты, выполнив соответствующие десятичные умножения:
4.22. Разделите 100101102 на 10102 и проверьте результат, умножая делитель на частное. 4.23. Разделите 100110101002 на 11002 и затем выполните соответствующее десятичное и восьмеричное деление. 4.24. Вычислите значения выражений: o а) 2568 + 10110,12 * (608 + 1210) - 1F16; o б) 1AD16 - 1001011002: 10102 + 2178; o в) 101010 + (10616 - 110111012) 128; o г) 10112 * 11002: 148 + (1000002 - 408). [ Ответ ] 4.25. Расположите следующие числа в порядке возрастания: o а) 748, 1100102, 7010, 3816; o б) 6E16, 1428, 11010012, 10010; o в) 7778, 1011111112, 2FF16, 50010; o г) 10010, 11000002, 6016, 1418. [ Ответ ] 4.26. Запишите уменьшающийся ряд чисел +3, +2,..., -3 в однобайтовом формате: o а) в прямом коде; o б) в обратном коде; o в) в дополнительном коде. [ Ответ ] 4.27. Запишите числа в прямом коде (формат 1 байт): а) 31; б) -63; в) 65; г) -128. 4.28. Запишите числа в обратном и дополнительном кодах (формат 1 байт): а) -9; б) -15; в) -127; г) -128. 4.29. Найдите десятичные представления чисел, записанных в дополнительном коде: а) 1 1111000; б) 1 0011011; в) 1 1101001; г) 1 0000000. 4.30. Найдите десятичные представления чисел, записанных в обратном коде: а) 1 1101000; б) 1 0011111; в) 1 0101011; г) 1 0000000. 4.31. Выполните вычитания чисел путем сложения их обратных (дополнительных) кодов в формате 1 байт. Укажите, в каких случаях имеет место переполнение разрядной сетки:
![]() ![]() Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... ![]() Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... ![]() Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... ![]() Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|