|
Возбуждение синхронных машинСтр 1 из 5Следующая ⇒ Раздел СИНХРОННЫЕ МАШИНЫ Способы возбуждения и устройство синхронных машин Магнитное поле и характеристики синхронных генераторов Параллельная работа синхронных генераторов Синхронный двигатель и синхронный компенсатор Синхронные машины специального назначения
Синхронные машины — это бесколлекторные машины переменного тока. По своему устройству они отличаются от асинхронных машин лишь конструкцией ротора, который может быть явнополюсным или неявнополюсным. Что же касается свойств, то синхронные машины отличаются синхронной частотой вращения ротора (n2 = n1 = const) при любой нагрузке, а также возможностью регулирования коэффициента мощности, устанавливая такое его значение, при котором работа синхронной машины становится наиболее экономичной. Синхронные машины обратимы и могут работать как в режиме генератора, так и в режиме двигателя. Синхронные генераторы составляют основу электротехнического оборудования электростанций, т. е. практически вся электроэнергия вырабатывается синхронными генераторами. Единичная мощность современных синхронных генераторов достигает миллиона киловатт и более. Синхронные двигатели применяются главным образом для привода устройств большой мощности. Такие двигатели по своим технико-экономическим показателям превосходят двигатели других типов. В крупных электроэнергетических установках синхронные машины иногда используются в качестве компенсаторов — генераторов реактивной мощности, позволяющих повысить коэффициент мощности всей установки. В данном разделе рассмотрены главным образом трехфазные синхронные машины. Приведены также сведения по некоторым типам синхронных двигателей весьма малой мощности, применяемым в устройствах автоматики и приборной техники.
ГЛАВА 19 • Способы возбуждения и устройство синхронных машин ГЛАВА 20 • Магнитное поле и характеристики синхронных генераторов Раздел СИНХРОННЫЕ МАШИНЫ Способы возбуждения и устройство синхронных машин Магнитное поле и характеристики синхронных генераторов Параллельная работа синхронных генераторов Синхронный двигатель и синхронный компенсатор Синхронные машины специального назначения
Синхронные машины — это бесколлекторные машины переменного тока. По своему устройству они отличаются от асинхронных машин лишь конструкцией ротора, который может быть явнополюсным или неявнополюсным. Что же касается свойств, то синхронные машины отличаются синхронной частотой вращения ротора (n2 = n1 = const) при любой нагрузке, а также возможностью регулирования коэффициента мощности, устанавливая такое его значение, при котором работа синхронной машины становится наиболее экономичной. Синхронные машины обратимы и могут работать как в режиме генератора, так и в режиме двигателя. Синхронные генераторы составляют основу электротехнического оборудования электростанций, т. е. практически вся электроэнергия вырабатывается синхронными генераторами. Единичная мощность современных синхронных генераторов достигает миллиона киловатт и более. Синхронные двигатели применяются главным образом для привода устройств большой мощности. Такие двигатели по своим технико-экономическим показателям превосходят двигатели других типов. В крупных электроэнергетических установках синхронные машины иногда используются в качестве компенсаторов — генераторов реактивной мощности, позволяющих повысить коэффициент мощности всей установки. В данном разделе рассмотрены главным образом трехфазные синхронные машины. Приведены также сведения по некоторым типам синхронных двигателей весьма малой мощности, применяемым в устройствах автоматики и приборной техники.
ГЛАВА 19 • Способы возбуждения и устройство синхронных машин Возбуждение синхронных машин
При рассмотрении принципа действия синхронного генератора (см. § 6.1) было установлено, что на роторе синхронного генератора расположен источник МДС (индуктор), создающий в генераторе магнитное поле. С помощью приводного двигателя (ПД) ротор генератора приводится во вращение с синхронной частотой n1. При этом магнитное поле ротора также вращается и, сцепляясь с обмоткой статора, наводит в ней ЭДС. Синхронные двигатели конструктивно почти не отличаются от синхронных генераторов. Они также состоят из статора с обмоткой и ротора. Поэтому независимо от режима работы любая синхронная машина нуждается в процессе возбуждения - наведения в ней магнитного поля. Основным способом возбуждения синхронных машин является электромагнитноевозбуждение, сущность которого состоит в том, что на полюсах ротора располагают обмотку возбуждения. При прохождении по этой обмотке постоянного тока возникает МДС возбуждения, которая наводит в магнитной системе машины магнитное поле. До последнего времени для питания обмотки возбуждения применялись специальные генераторы постоянного тока независимого возбуждения (см. § 28.2), называемые возбудителями В (рис. 19.1, а), обмотка возбуждения которого (ОВ) получала питание постоянного тока от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронной машины и якоря возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронной машины поступает через контактные кольца и щетки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя (r1)и подвозбудителя (r2). В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют. В синхронных генераторах большой мощности — турбогенераторах (см. § 19.2) — иногда в качестве возбудителя применяют генераторы переменного тока индукторного типа (см. § 23.6). На выходе такого генератора включают полупроводниковый выпрямитель.
Рис. 19.1. Контактная (а) и бесконтактная (б) системы электромагнитного возбуждения синхронных генераторов
Регулировка тока возбуждения синхронного генератора в этом случае осуществляется изменением возбуждения индукторного генератора. Получила применение в синхронных генераторах бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя и в этом случае применяют генератор переменного тока (рис. 19.1, 5), у которого обмотка 2, в которой наводится ЭДС (обмотка якоря), расположена на роторе, а обмотка возбуждения 1 расположена на статоре. В результате обмотка якоря возбудителя и обмотка возбуждения синхронной машины оказываются вращающимися, и их электрическое соединение осуществляется непосредственно, без контактных колец и щеток. Но так как возбудитель является генератором переменного тока, а обмотку возбуждения необходимо питать постоянным током, то на выходе обмотки якоря возбудителя включают полупроводниковый преобразователь 3, закрепленный на валу синхронной машины и вращающийся вместе с обмоткой возбуждения синхронной машины и обмоткой якоря возбудителя. Питание постоянным током обмотки возбуждения 1 возбудителя осуществляется от подвозбудителя (ПВ) — генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронной машины позволяет повысить ее эксплуатационную надежность и увеличить КПД. В синхронных генераторах, в том числе гидрогенераторах (см. § 19.2), получил распространение принцип самовозбуждения (рис. 19.2, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь (ПП) преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счет остаточного магнетизма магнитопровода машины.
Рис. 19.2. Принцип самовозбуждения синхронных генераторов
На рис. 19.2, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подается в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора побуждения АРВ, на вход которого поступают сигналы напряжения на выходе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты БЗ, обеспечивающий защиту обмотки возбуждения и тиристорного преобразователя ТП от перенапряжений и токовой перегрузки. В современных синхронных двигателях для возбуждения применяют тиристорные возбудительные устройства, включаемые в сеть переменного тока и осуществляющие автоматическое управление током возбуждения во всевозможных режимах работы двигателя, в том числе и переходных. Такой способ возбуждения является наиболее надежным и экономичным, так как КПД тиристорных возбудительных устройств выше, чем у генераторов постоянного тока. Промышленностью выпускаются тиристорные возбудительные устройства на различные напряжения возбуждения с допустимым значением постоянного тока 320 А. Наибольшее распространение в современных сериях синхронных двигателей получили возбудительные тиристорные устройства типов ТЕ8-320/48 (напряжение возбуждения 48 В) и ТЕ8-320/75 (напряжение возбуждения 75 В). Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5% полезной мощности машины (меньшее значение относится к машинам большой мощности). В синхронных машинах малой мощности находит применение принцип возбуждения постоянными магнитами, когда на роторе машины располагаются постоянные магниты. Такой способ возбуждения дает возможность избавить машину от обмотки возбуждения. В результате конструкция машины упрощается, становится более экономичной и надежной. Однако из-за дефицитности материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничивается лишь машинами мощностью не более нескольких киловатт (см. §23.1). Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|