Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Строение зоны термического влияния (ЗТВ).





Рассмотрим схему зоны термического влияния в сварных соединениях в соответствии с диаграммой состояния и максимальной температурой нагрева, достигаемой в отдельных точках. Протяженность отдельных участков возрастает с уменьшением градиента распределения максимальных температур нагрева.

Рис.

Участок 1 – металл шва

Участки 2, 3, 4, прилежащие к линии сплавления, образуются в сварных соединениях сталей, претерпевающих перитектическую реакцию, что характерно для низкоуглеродистых сталей с содержанием углерода до 0,5%. Для данных участков характерно образование высокотемпературной химической неоднородности, следствием которой может служить снижение технологических и служебных свойств сварных соединений. Одним из существенных факторов, способствующим высокотемпературной химической неоднородностит, является процесс превращении α→ δ при нагреве до 1400оС.

Участок 5. характеризуется крупнозернистой структурой в результате перегрева аустенитных зерен. В низкоуглеродистых и низколегированных сталях при замедленной последующем охлаждении образуется перлитно-ферритная структура пластинчатого типа.

Участок 6. участок нормализации с температурой нагрева в интервале Т рекрист – Ас3. Для этого участка характерна относительно мелкозернистая структура аустенита с повышенной неоднородностью по содержанию углерода и легирующих элементов.

Участок 7. Участок неполной рекристаллизации с максимальной температурой нагрева в интервале Ас3-Ас1, структура стали – аустенитно-ферритная с наличием карбидов. Аустенит характеризуется наибольшей неоднородностью по углероду и элементам замещения. При умеренных скоростях охлаждения из межкритического интервала температур более углеродистая част аустенита превращается по мартенситному механизму, а менее углеродистая – по диффузионному.

Участок 8 – участок отпуска, в котором металл нагревается до температуры Ас1 600оС. Здесь наиболее активно происходят процессы разделения феррита и цементита, коагуляции карбидов.

Следует отметить, что во всех участках ЗТВ процессы структурно-фазовых превращений, и, следовательно, формирования механических свойств сварного соединения в значительной степени зависят от параметров термических циклов сварки и термообработки, химического состава и исходного структурного состояния сталей.

Фазовые превращения в стали при нагреве и охлаждении.

Нагрев стали сопровождается образованием аустенита, а основное превращение – это превращение перлита в аустенит, так как в структуре всех сталей в исходном состоянии присутствует перлит. Превращение идет по реакции Ф+Ц → А.

В доэвтектоидных сталях после исчезновения перлита при нагреве от температуры Ас3 до Ас1 избыточный феррит превращается в аустенит. В заэвтектоидных сталях в этом интервале температур избыточный цементит растворяется в аустените. Выше температур Ас3 идут только процессы гомогенизации и роста зерна аустенита. Рост зерна – самопроизвольно протекающий процесс, так как при этом уменьшается суммарная поверхность зерен (уменьшается поверхностная энергия). От размера зерна аустенита зависят механические свойства стали, особенно понижается ударная вязкость и пластичность.

При охлаждении аустенит не сохраняется, а претерпевает превращения. При этом в зависимости от скорости охлаждения могут протекать два превращения: аустенита в феррито-карбидную смесь (ФКС) или аустенита в мартенсит. Чем больше скорость охлаждения, тем дисперснее структура ФКС. Если при охлаждении подавляется диффузионная подвижность атомов, то происходит мартенситное превращение. Такое влияние скорости охлаждении связано с тем, что с увеличением скорости охлаждения аустенит может переохлаждаться до более низких температур. Чем больше скорость переохлаждения, тем больше степень переохлаждения, меньше диффузионная подвижность атомов железа и углерода и ниже действительная температура превращения аустенита. Таким образом, важнейшим фактором, влияющим на механизм и кинетику превращения аустенита при непрерывном охлаждении, а также на строение и свойства получающихся продуктов превращения, является степень переохлаждения аустенита.

Аналогичная зависимость характерна при изотермическом охлаждении. Каждой действительной температуре изотермической выдержки соответствует определенное время начала и конца превращения. Диаграммы изотермического превращения аустенита для всех сталей приведены в справочниках и с их помощью можно прогнозировать структуру и твердость после конкретного режима охлаждения.

 

Изотермическая диаграмма распада переохлажденного аустенита эвтектоидной стали (показать структуры и скорости охлаждения).

ФКС в зависимости от температуры нагрева и времени изотермической выдержки имеет следующую структуру:

Перлит (межпластинчатое расстояние 0,5-0,7 мкм);

Сорбит (межпластинчатое расстояние 0,3-0,4 мкм);

Тростит (межпластинчатое расстояние 0,1-0,2 мкм).

Мартенсит имеет пластинчатую или реечную форму. Промежуточным продуктом может быть бейнит – смесь феррита и дисперсных карбидов, которые можно различить только в электронном микроскопе.







Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.