Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Технологии обработки информации





Технологии обработки информации

 

Оглавление

Введение

1. Автоматизированная обработка информации: основные понятия и технология

1.1. Информация, информационные процессы и информационное общество

1.2. Технология обработки информации.

1.3. Компьютерные коммуникации.

Общий состав и структура ПК и их программное обеспечение

2.1. Архитектура ЭВМ

2.2. Программное обеспечение вычислительной техники

2.3. Операционная система Windows

2.4. Прикладное программное обеспечение

Защита информации от несанкционированного доступа

Локальные и глобальные сети, сетевые технологии обработки данных

Прикладные программные средства

5.1. Текстовые процессоры

5.2. Электронные таблицы

5.3. Системы управления базами данных

5.4. Графические редакторы

5.5. Информационно-поисковые системы

Автоматизированные системы

6.1. Понятие автоматизированной системы

6.2. Виды автоматизированных систем

 

Введение

 

Цель преподавания дисциплины состоит в изучении основных положений и разделов информатики; получении навыков практического использования компьютера; получении отчетливого представления о роли информатики и информационных технологий в современном мире.

Задачами изучения дисциплины являются:

· развитие логического и алгоритмического мышления.

· овладение основами функционирования персональных компьютеров, методами и средствами хранения и передачи информации, обработкой результатов измерений на ЭВМ, компьютерной графикой

· выработка умения самостоятельного решения задач обработки текстовой и цифровой информации, навыков практической работы на персональном компьютере.

Дисциплина "Информатика" связана со следующими дисциплинами:

· Математика (разделы "Линейная алгебра"; "Численные методы")

· Физика (Раздел "Электричество и магнетизм").

В соответствии с Государственным образовательным стандартом курс "Информатика" должен включать в себя следующие темы обязательного минимума:

Понятие информации, общая характеристика процессов сбора, передачи, обработки и накопления информации; технические и программные средства реализации информационных процессов; модели решения функциональных и вычислительных задач; алгоритмизация и программирование; языки программирования высокого уровня; базы данных; программное обеспечение и технологии программирования; локальные и глобальные сети ЭВМ; основы защиты информации и сведений, составляющих государственную тайну; методы защиты информации.

Страница 3 из 17

1. Автоматизированная обработка информации: основные понятия и технология

 

Информация, информационные процессы и информационное общество

Фундаментальной чертой цивилизации является рост производства, потребления и накопления информации во всех отраслях человеческой деятельности. Вся жизнь человека так или иначе связана с получением, накоплением и обработкой информации. Что бы человек не делал: читает ли он книгу, смотрит ли он телевизор, разговаривает ли - он постоянно и непрерывно получает и обрабатывает информацию.

Для современной цивилизации характерна небывалая скорость развития науки, техники и новых технологий. Так, от изобретения книгопечатания (середина XV века) до изобретения радиоприемника (1895 год) прошло около 440 лет, а между изобретением радио и телевидения - около 30 лет. Разрыв во времени между изобретением транзистора и интегральной схемы составил всего 5 лет.

В области накопления научной информации ее объем начиная с XVII века удваивался примерно каждые 10 - 15 лет. Поэтому одной из важнейших проблем человечества является лавинообразный поток информации в любой отрасли его жизнедеятельности. Подсчитано, например, что в настоящее время специалист должен тратить около 80% своего рабочего времени, чтобы уследить за всеми новыми печатными работами в его области деятельности. Увеличение информации и растущий спрос на нее обусловили появление отрасли, связанной с автоматизацией обработки информации - ИНФОРМАТИКИ.

Концепции информации

Существование множества определений информации обусловлено сложностью, специфичностью и многообразием подходов к толкованию сущности этого понятия. Существуют 3 наиболее распространенные концепции информации, каждая из которых по-своему объясняет ее сущность.

Первая концепция (концепция К. Шеннона), отражая количественно-информационный подход, определяет информацию как меру неопределенности (энтропию) события. Количество информации в том или ином случае зависит от вероятности его получения: чем более вероятным является сообщение, тем меньше информации содержится в нем. Этот подход, хоть и не учитывает смысловую сторону информации, оказался весьма полезным в технике связи и вычислительной технике и послужил основой для измерения информации и оптимального кодирования сообщений. Кроме того, он представляется удобным для иллюстрации такого важного свойства информации, как новизна, неожиданность сообщений.

При таком понимании информация - это снятая неопределенность, или результат выбора из набора возможных альтернатив.

Вторая концепция рассматривает информацию как свойство материи. Ее появление связано с развитием кибернетики и основано на утверждении, что информацию содержат любые сообщения, воспринимаемые человеком или приборами. Наиболее ярко и образно эта концепция информации выражена академиком В.М. Глушковым. Он писал, что "информацию несут не только испещренные буквами листы книги или человеческая речь, но и солнечный свет, складки горного хребта, шум водопада, шелест травы".

То есть, информация как свойство материи создает представление о ее природе и структуре, упорядоченности и разнообразии. Она не может существовать вне материи, а значит, она существовала и будет существовать вечно, ее можно накапливать, хранить и перерабатывать.

Третья концепция основана на логико-семантическом подходе, при котором информация трактуется как знание, причем не любое знание, а та его часть, которая используется для ориентировки, для активного действия, для управления и самоуправления.

Иными словами, информация - это действующая, полезная часть знаний. Представитель этой концепции В. Г. Афанасьев, развивая логико-семантический подход, дает определение социальной информации: "Информация, циркулирующая в обществе, используемая в управлении социальными процессами, является социальной информацией. Она представляет собой знания, сообщения, сведения о социальной форме движения материи и о всех других формах в той мере, в какой она используется обществом..."

Социальная информация - многоуровневое знание. Она характеризует общественные процессы в целом - экономические, политические, социальные, демографические, культурно-духовные и т.д.; конкретные процессы, происходящие в различных ячейках общества - на предприятиях, в кооперативах, семьях и т.д.; а также интересы и стремления различных социальных групп - рабочего класса, молодежи, пенсионеров, женщин и др. В самом общем смысле под социальной информацией понимают знания, сообщения, сведения о социальной форме движения материи и о всех других ее формах в той мере, в какой они используются обществом, вовлеченными в орбиту общественной жизни. То есть информация есть содержание логического мышления, которое, воспринимаясь с помощью слышимого или видимого слова, может быть использована людьми в их деятельности.

Рассмотренные подходы в определенной мере дополняют друг друга, освещают различные стороны сущности понятия информации и облегчают тем самым систематизацию ее основных свойств. Обобщив данные подходы, можно дать следующее определение информации:

Информация - это сведения, снимающие неопределенность об окружающем мире, которые являются объектом хранения, преобразования, передачи и использования. Сведения - это знания выраженные в сигналах, сообщениях, известиях, уведомлениях и т.д.

Классификация информации

1. Информация подразделяется по форме представления на 2 вида:

- дискретная форма представления информации - это последовательность символов, характеризующая прерывистую, изменяющуюся величину (количество дорожно-транспортных происшествий, количество тяжких преступлений и т.п.);

- аналоговая или непрерывная форма представления информации - это величина, характеризующая процесс, не имеющий перерывов или промежутков (температура тела человека, скорость автомобиля на определенном участке пути и т.п.).

2. По области возникновения выделяют информацию:

- элементарную (механическую), которая отражает процессы, явления неодушевленной природы;

- биологическую, которая отражает процессы животного и растительного мира;

- социальную, которая отражает процессы человеческого общества.

3. По способу передачи и восприятия различают следующие виды информации:

- визуальную, передаваемую видимыми образами и символами;

- аудиальную, передаваемую звуками;

- тактильную, передаваемую ощущениями;

- органолептическую, передаваемую запахами и вкусами;

- машинную, выдаваемую и воспринимаемую средствами вычислительной техники.

4. Информацию, создаваемую и используемую человеком, по общественному назначению можно разбить на три вида:

- личную, предназначенную для конкретного человека;

- массовую, предназначенную для любого желающего ее пользоваться (общественно-политическая, научно-популярная и т.д.);

- специальную, предназначенную для использования узким кругом лиц, занимающихся решением сложных специальных задач в области науки, техники, экономики.

5. По способам кодирования выделяют следующие типы информации:

- символьную, основанную на использовании символов - букв, цифр, знаков и т. д. Она является наиболее простой, но практически применяется только для передачи несложных сигналов о различных событиях. Примером может служить зеленый свет уличного светофора, который сообщает о возможности начала движения пешеходам или водителям автотранспорта.

- текстовую, основанную на использовании комбинаций символов. Здесь так же, как и в предыдущей форме, используются символы: буквы, цифры, математические знаки. Однако информация заложена не только в этих символах, но и в их сочетании, порядке следования. Так, слова КОТ и ТОК имеют одинаковые буквы, но содержат различную информацию. Благодаря взаимосвязи символов и отображению речи человека текстовая информация чрезвычайно удобна и широко используется в деятельности человека: книги, брошюры, журналы, различного рода документы, аудиозаписи кодируются в текстовой форме.

- графическую, основанную на использовании произвольного сочетания в пространстве графических примитивов. К этой форме относятся фотографии, схемы, чертежи, рисунки, играющие большое значение в деятельности человек.

Свойства информации можно рассматривать в трех аспектах: техническом - это точность, надежность, скорость передачи сигналов и т.д.; семантическом - это передача смысла текста с помощью кодов и прагматическом - это насколько эффективно информация влияет на поведение объекта.

 

Страница 4 из 17

Табличные базы данных

Табличная база данных содержит перечень объектов одного типа, т. е. объектов с одинаковым набором свойств. Такую базу данных удобно представлять в виде двумерной таблицы.

Рассмотрим, например, базу данных «Компьютер» (табл.), представляющую собой перечень объектов (компьютеров), каждый из которых имеет имя (название). В качестве характеристик (свойств) могут выступать тип процессора и объем оперативной памяти.

Столбцы такой таблицы называют полями; каждое поле характеризуется своим именем (названием соответствующего свойства) и типом данных, отражающих значения данного свойства. Поля Название и Тип процессора — текстовые, а Оперативная память — числовое. При этом каждое поле обладает определенным набором свойств (размер, формат и др.). Так, для поля Оперативная память задан формат данных целое число.

Поле базы данных — это столбец таблицы, включающий в себя значения определенного свойства.

Строки таблицы являются записями об объекте; эти записи разбиты на поля столбцами таблицы. Запись базы данных — это строка таблицы, которая содержит набор значений различных свойств объекта.

В каждой таблице должно быть, по крайней мере, одно ключевое поле, содержимое которого уникально для любой записи в этой таблице. Значения ключевого поля однозначно определяют каждую запись в таблице.

Иерархические базы данных

Иерархические базы данных графически могут быть представлены как дерево, состоящее из объектов различных уровней. Верхний уровень занимает один объект, второй — объекты второго уровня и т. д.

Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объект более близкий к корню) к потомку (объект более низкого уровня), при этом возможно, чтобы объект-предок не имел потомков или имел их несколько, тогда как у объекта-потомка обязательно только один предок. Объекты, имеющие общего предка, называются близнецами.

Иерархической базой данных является Каталог папок Windows, с которым можно работать, запустив Проводник. Верхний уровень занимает папка Рабочий стол (На втором уровне находятся папки Мой компьютер, Мои документы. Сетевое окружение и Корзина, которые представляют собой потомков папки Рабочий стол, будучи между собой близнецами. В свою очередь, папка Мой компьютер — предок по отношению к папкам третьего уровня, папкам дисков (Диск 3,5(А:), С:, D:, E:, F:) и системным папкам (Принтеры, Панель управления и др.).

Иерархической базой данных является реестр Windows, в котором хранится вся информация, необходимая для нормального функционирования компьютерной системы (данные о конфигурации компьютера и установленных драйверах, сведения об установленных программах, настройки графического интерфейса).

Содержание реестра автоматически обновляется при установке нового оборудования, инсталляции программ и т.д. Для просмотра и редактирования реестра Windows в ручном режиме можно использовать специальную программу regedit.exe. Однако редактирование реестра нужно проводить крайне осторожно при условии понимания выполняемых действий. Неквалифицированное редактирование реестра может привести компьютер в неработоспособное состояние.

Еще одним примером иерархической базы данных является база данных Доменная система имен подключенных к Интернету компьютеров. На верхнем уровне находится табличная база данных, содержащая перечень доменов верхнего уровня (всего 264). На втором уровне - табличные базы данных, содержащие перечень доменов второго уровня для каждого домена первого уровня. На третьем уровне могут находится табличные базы, содержащие перечень доменов третьего уровня для каждого домена второго уровня, и таблицы, содержащие IP-адреса компьютеров, находящихся в домене второго уровня.

Страница 5 из 17

Компьютерные коммуникации

 

Компьютерная сеть — это два или более компьютера, обменивающихся информацией по линиям связи.

Компьютерная сеть позволяет передавать информацию с одного компьютера на другой, а значит, совместно использовать ресурсы, например, принтеры, модемы и устройства хранения информации.

Сети бывают:

· локальные – объединяют компьютеры, находящиеся недалеко друг от друга, например, стоящие в соседних комнатах, в одном здании;

· глобальные – компьютеры могут находиться в разных городах и странах. Глобальные сети, как правило, объединяют несколько локальных сетей.

Internet – это глобальная компьютерная система, которая:

· логически взаимосвязана пространством глобальных уникальных адресов (каждый компьютер, подключаемый к сети имеет свой уникальный адрес);

· способна поддерживать коммуникации (обмен информацией);

· обеспечивает работу высокоуровневых сервисов (служб), например, WWW, электронная почта, телеконференции, разговоры в сети и другие.

Internet является одноранговой сетью, т.е. все компьютеры в сети равноправны, и любой компьютер можно подключить к любому другому компьютеру. Т.о., любой компьютер, подключенный к сети, может предлагать свои услуги любому другому.

Internet предоставляет пользователям всевозможные информационные и коммуникационные услуги.

Информационные услуги - услуги доступа к информации:

· доступ к информационные ресурсам сети, то есть можно получить необходимую информацию, имеющуюся на серверах сети, например, документы, файлы, информацию из различных баз данных и т.п.;

· размещение собственной информации в сети. Существует множество серверов, предоставляющих возможность бесплатно разместить на них информацию. Если информация размещается в целях публикации, то любые пользователи Internet могут получить доступ к этой информации и получать и просматривать ее в любое время.

Коммуникационные услуги - услуги обмена информацией, общения:

· обмен информацией в отсроченном режиме. Так работает, например, электронная почта. Отправитель направляет письмо в почтовый ящик получателя, который просмотрит это письмо в удобное для него время.

· обмен в режиме реального времени. Например, разговоры в сети. Люди набирают свои реплики с клавиатуры и посылают их на разговорный сервер, и эти реплики видят все участники разговора одновременно.

NNTP

Протокол получения электронных писем

Post Office Protocol 3

POP3

Простой протокол отправки электронных писем

Simple Mail Transfer Protocol

SMTP

протокол передачи файлов

File Transfer Protocol

FTP

Протокол передачи гипертекста

Hyper Text Transfer Protocol

HTTP

Система доменных имен

Числовые адреса хороши для связи машин, но при работе в сети удобнее использовать имена. Поэтому всем компьютерам в Internet были присвоены собственные (доменные) имена (напpимеp, www.sch130.nsc.ru).

Раньше соответствие между адресом и именем определялось из специального текстового файла - host file (файл рабочих ЭВМ).

Cистема запросов в сети Интернет, позволяющая получать информацию о соответствии адресов и имен по сети, которая сейчас называется доменной системой имен - DNS (Domain Name System).

Домены в именах отделяются друг от друга точками:

nsc.ru - Сеть ННЦ

ict.nsc.ru - Сеть ИВТ СО РАН

nsu.ru - Университетская сеть в Новосибирске

www.sch130.nsc.ru – Лицей №130

http://www.ripn.net/ Российский НИИ Развития Общественных Сетей

ru – Россия,

us – США,

fr – Франция,

cn – Китай,

cl – Чили,

jp – Япония

edu - сеть университетов

com - с еть коммерческих организаций

gov - сеть государственных организаций

mil - сеть Министерства обороны США

org - сеть общественных организаций

net - сеть сетевых организаций

URL

IP-адрес или соответствующее ему доменное имя позволяют однозначно идентифицировать компьютер в сети Internet.

Но дело в том, что на компьютере может присутствовать множество различной информации в различных форматах, например, в виде файлов, электронных сообщений, страниц и т.п. Для того, чтобы можно было безошибочно получать нужную информацию и в нужном формате используется строка символов, которую называют универсальный указатель ресурса или URL (Universal Resource Locator). Эта строка однозначно идентифицирует любой ресурс в сети Internet.

Страница 6 из 17

Архитектура ЭВМ

Архитектура ЭВМ - это общее описание структуры и функций ЭВМ на уровне, достаточном для понимания принципов работы и системы команд ЭВМ, не включающее деталей технического и физического устройства компьютера.

К архитектуре относятся следующие принципы построения ЭВМ:

1. структура памяти ЭВМ;

2. способы доступа к памяти и внешним устройствам;

3. возможность изменения конфигурации;

4. система команд;

5. форматы данных;

6. организация интерфейса.

Основные принципы построения ЭВМ были сформулированы американским учёным Джоном фон Нейманом в 40-х годах 20 века:

1. Любую ЭВМ образуют три основные компоненты: процессор, память и устройства ввода-вывода (УВВ).

2. Информация, с которой работает ЭВМ делится на два типа:

o набор команд по обработке (программы);

o данные подлежащие обработке.

3. И команды, и данные вводятся в память (ОЗУ) – принцип хранимой программы.

4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

Архитектура современных персональных компьютеров основана на магистрально-модульном принципе. Информационная связь между устройствами компьютера осуществляется через системную шину (другое название - системная магистраль).

Шина - это кабель, состоящий из множества проводников. По одной группе проводников - шине данныхпередаётся обрабатываемая информация, по другой - шине адреса - адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали - шина управления, по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др).

Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины. Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом, передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем , где n – разрядность шины. Важно, чтобы производительности всех подсоединённых к шине устройств были согласованы. Неразумно иметь быстрый процессор и медленную память или быстрый процессор и память, но медленный винчестер.

Ниже представлена схема устройства компьютера, построенного по магистральному принципу:

В современных ЭВМ реализован принцип открытой архитектуры, позволяющий пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости её модернизацию. Конфигурацией компьютера называют фактический набор компонентов ЭВМ, которые составляют компьютер. Принцип открытой архитектуры позволяет менять состав устройств ЭВМ. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться на другие.

Аппаратное подключение периферийного устройства к магистрали на физическом уровне осуществляется через специальный блок - контроллер (другие названия - адаптер, плата, карта). Для установки контроллеров на материнской плате имеются специальные разъёмы - слоты.

Программное управление работой периферийного устройства производится через программу - драйвер, которая является компонентой операционной системы. Так как существует огромное количество разнообразных устройств, которые могут быть установлены в компьютер, то обычно к каждому устройству поставляется драйвер, взаимодействующий непосредственно с этим устройством.

Связь компьютера с внешними устройствами осуществляется через порты – специальные разъёмы на задней панели компьютера. Различают последовательные и параллельные порты. Последовательные (COM – порты) служат для подключения манипуляторов, модема и передают небольшие объёмы информации на большие расстояния. Параллельные (LPT - порты) служат для подключения принтеров, сканеров и передают большие объёмы информации на небольшие расстояния. В последнее время широкое распространение получили последовательные универсальные порты (USB), к которым можно подключать различные устройства.

Минимальная конфигурация компьютера включает в себя: системный блок, монитор, клавиатуру и мышь.

Состав системного блока

Системный блок – основная часть компьютера. Он состоит из металлического корпуса, в котором располагаются основные компоненты компьютера. С ним соединены кабелями клавиатура, мышь и монитор. Внутри системного блока расположены:

· микропроцессор, который выполняет все поступающие команды, производит вычисления и управляет работой всех компонентов компьютера;

· оперативная память, предназначенная для временного хранения программ и данных;

· системная шина, осуществляющая информационную связь между устройствами компьютера;

· материнская плата, на которой находятся микропроцессор, системная шина, оперативная память, коммуникационные разъемы, микросхемы управления различными компонентами компьютера, счётчик времени, системы индикации и защиты;

· блок питания, преобразующий электропитание сети в постоянный ток низкого напряжения, подаваемый на электронные схемы компьютера;

· вентиляторы для охлаждения греющихся элементов;

· устройства внешней памяти, к которым относятся накопители на гибких и жестких магнитных дисках, дисковод для компакт-дисков СD-ROM, предназначенные для длительного хранения информации.

Аппаратной основой системного блока является материнская плата - самостоятельный элемент, который управляет внутренними связями и с помощью системы прерываний взаимодействует с внешними устройствами. На материнской плате расположены все важнейшие микросхемы.

Персональные компьютеры делятся на стационарные и портативные. Стационарные обычно устанавливаются рабочем столе. Портативные компьютеры делятся на следующие категории:

1. переносные (portable), которые имеют небольшую массу и габариты и поддаются транспортировке одним человеком;

2. наколенные (laptop), выполненные в виде дипломата;

3. блокнотные (notebook), имеющие габариты большого блокнота;

4. карманные (pocket), которые помещаются в карман.

В соответствии с вышеприведенной классификацией, системные блоки могут иметь следующие типы корпусов:

· desktop
· tower
· notebook

 

Центральный процессор - это центральное устройство компьютера, которое выполняет операции по обработке данных и управляет периферийными устройствами компьютера. У компьютеров четвёртого поколения и старше функции центрального процессора выполняет микропроцессор на основе СБИС, содержащей несколько миллионов элементов, конструктивно созданный на полупроводниковом кристалле путём применения сложной микроэлектронной технологии.

В состав центрального процессора входят:

· устройство управления (УУ);

· арифметико-логическое устройство (АЛУ);

· запоминающее устройство (ЗУ) на основе регистров процессорной памяти и кэш-памяти процессора;

· генератор тактовой частоты (ГТЧ).

Устройство управления организует процесс выполнения программ и координирует взаимодействие всех устройств ЭВМ во время её работы.

Арифметико-логическое устройство выполняет арифметические и логические операции над данными: сложение, вычитание, умножение, деление, сравнение и др.

Запоминающее устройство - это внутренняя память процессора. Регистры служит промежуточной быстрой памятью, используя которые, процессор выполняет расчёты и сохраняет промежуточные результаты. Для ускорения работы с оперативной памятью используется кэш-память, в которую с опережением подкачиваются команды и данные из оперативной памяти, необходимые процессору для последующих операций.

Генератор тактовой частоты генерирует электрические импульсы, синхронизирующие работу всех узлов компьютера. В ритме ГТЧ работает центральный процессор.

К основным характеристикам процессора относятся:

· Быстродействие (вычислительная мощность) – это среднее число операций процессора в секунду.

· Тактовая частота в МГц. Тактовая равна количеству тактов в секунду. Такт - это промежуток времени между началом подачи текущего импульса ГТЧ и началом подачи следующего. Характерные тактовые частоты микропроцессоров: 40 МГц, 66 МГц, 100 МГц, 130 МГц, 166 МГц, 200 МГц, 333 МГц, 400 МГц, 600 МГц, 800 МГц, 1000 МГц и т. д. До 3ГГц Тактовая частота отражает уровень промышленной технологии, по которой изготавливался данный процессор. Она также характеризирует и компьютер, поэтому по названию модели микропроцессора можно составить достаточно полное представление о том, к какому классу принадлежит компьютер. Поэтому часто компьютерам дают имена микропроцессоров, входящих в их состав. Ниже приведены названия наиболее массовых процессоров, выпущенных фирмой Intel и годы их создания: 8080 (1974 г.), 80286 (1982 г.), 80386DX (1985 г.), 80486DX (1989 г.), 80586 или Pentium (1993 г.), Pentium Pro (1995 г.), Pentium II (1997 г.), Pentium III (1999 г.), Pentium IV (2001 г.). Как видно, увеличение частоты – одна из основных тенденций развития микропроцессоров. На рынке массовых компьютеров лидирующее место среди производителей процессоров занимают 2 фирмы: Intel и AMD. За ними закрепилось базовое название, переходящее от модели к модели. У Intel – это Pentium и модель с урезанной кэш-памятью Pentium Celeron; у AMD – это Athlon и модель с урезанной кэш-памятью Duron.

· Разрядность процессора - это максимальное количество бит информации, которые могут обрабатываться и передаваться процессором одновременно. Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные. Например, если регистр имеет разрядность 2 байта, то разрядность процессора равна 16 (2x8); если 4 байта, то 32; если 8 байтов, то 64.

Для пользователей процессор интересен прежде всего своей системой команд и скоростью их выполнения. Система команд процессора представляет собой набор отдельных операций, которые может выполнить процессор данного типа. Разные модели микропроцессоров выполняют одни и те же операции за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций.

Для математических вычислений к основному микропроцессору добавляют математический сопроцессор. Начиная с модели 80486DX процессор и сопроцессор выполняют на одном кристалле.

Устройства памяти ЭВМ

Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлен на рисунке:

Внутренняя память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором.

Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер.

Энергозависимой называется память, которая стирается при выключении компьютера.

Энергонезависимой называется память, которая не стирается при выключении компьютера.

К энергонезависимой внутренней памяти относится постоянное запоминающее устройство (ПЗУ). Содержимое ПЗУ устанавливается на заводе-изготовителе и в дальнейшем не меняется. Эта память составлена из микросхем, как правило, небольшого объема. Обычно в ПЗУ записываются программы, обеспечивающие минимальный базовый набор функций управления устройствами компьютера. При включении компьютера первоначально управление передается программе из ПЗУ, которая тестирует компоненты компьютера и запускает программу-загрузчик операционной системы.

К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш - память. В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Это отражено в англоязычном названии ОЗУ – RAM (Random Access Memory – память с произвольным доступом). Доступ к этой информации в ОЗУ осуществляется очень быстро. Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называется видеопамять. Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством (буфером). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате.

Внешняя память может быть с произвольным доступом и последовательным доступом. Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа.

Выделяют следующие основные типы устройств памяти с произвольным доступом:

1. Накопители на жёстких магнитных дисках (винчестеры, НЖМД) - несъемные жесткие магнитные диски. Ёмкость современных винчестеров от сотен мегабайт до нескольких сотен гигабайт. На современных компьютерах это основной вид внешней памяти. Первые жесткие диски состояли из 2 дисков по 30 Мбайт и обозначались 30/30, что совпадало с маркировкой модели охотничьего ружья “Винчестер” - отсюда пошло такое название этих накопителей.

2. Накопители на гибких магнитных дисках (флоппи-дисководы, НГМД) – устройства для записи и считывания информации с небольших съемных магнитных дисков (дискет), упакованные в пластиковый конверт (гибкий - у 5,25 дюймовых дискет и жесткий у 3,5 дюймовых). Максимальная ёмкость 5,25 дюймовой дискеты - 1,2Мбайт; 3,5 дюймовой дискеты - 1,44Мбайт. В настоящее время 5,25 дюймовые дискеты морально устарели и не используются.

3. Оптические диски (СD-ROM - Compact Disk Read Only Memory) - компьютерные устройства для чтения с компакт-дисков. CD-ROM диски получили распространение вслед за аудио-компакт дисками. Это пластиковые диски с напылением тонко<







ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.