Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Ошибка репрезентативности средних величин, методика расчета, значение.





Ошибка репрезентативности средних величин, методика расчета, значение.

В статистике выделяют два основных метода исследования - сплошной и выборочный. При проведении выборочного исследования обязательным является соблюдение следующих требований: репрезентативность выборочной совокупности и достаточное число единиц наблюдений. При выборе единиц наблюдения возможны ошибки смещения, т.е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объектив­ными и закономерными. При определении степени точности выборочно­го исследования оценивается величина ошибки, которая может прои­зойти в процессе выборки - случайная ошибка репрезентативности (m) -является фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования и аналогичными величинами, которые были бы получены при проведении исследования на гене­ральной совокупности.

Оценка достоверности результатов исследования предусматривает определение:

1. ошибки репрезентативности

2. доверительных границ средних (или относительных) величин в генеральной совокупности

3. достоверности разности средних (или относительных) величин (по критерию t)

Расчет ошибки репрезентативности (mм) средней арифмети­ческой величины (М):

, где σ - среднее квадратическое отклонение; n - численность выборки (>30).

В клинических и экспериментальных работах довольно часто приходится использовать малую выборку, когда число наблюдений меньше или равно 30. При малой выборке для расчета ошибок репрезентатив­ности, как средних, так и относительных величин, число наблюде­ний уменьшается на единицу, т.е.

; .

Величина ошибки репрезентативности зависит от объема выборки: чем больше число наблюдений, тем меньше ошибка. Для оценки достоверности выборочного показателя принят следующий подход: показатель (или средняя величина) должен в 3 раза превышать свою ошибку, в этом случае он считается достоверным.


Понятие о корреляционном анализе.

Корреляционный анализ - метод, позволяющий обнаружить зависимость между несколькими случайными величинами.Допустим, проводится независимое измерение различных параметров у одного типа объектов. Из этих данных можно получить качественно новую информацию - о взаимосвязи этих параметров.

Например, измеряем рост и вес человека, каждое измерение представлено точкой в двумерном пространстве:

Несмотря на то, что величины носят случайный характер, в общем наблюдается некоторая зависимость - величины коррелируют.В данном случае это положительная корреляция (при увеличении одного параметра второй тоже увеличивается).

Если Взаимосвязь между переменными необходимо охарактеризовать численно, вводится коэффициент корреляции. Он рассчитывается следующим образом:

Есть массив из n точек { x1,i, x2,i }

Рассчитываются средние значения для каждого параметра:

И коэффициент корреляции:

r изменяется в пределах от -1 до 1. В данном случае это линейный коэффициент корреляции, он показывает линейную взаимосвязь между x1 и x2: r равен 1 (или -1), если связь линейна.

Коэффициент r является случайной величиной, поскольку вычисляется из случайных величин. Для него можно выдвигать и проверять следующие гипотезы:

1. Коэффициент корреляции значимо отличается от нуля (т.е. есть взаимосвязь между величинами)

2. Отличие между двумя коэффициентами корреляции значимо:

Ошибка репрезентативности средних величин, методика расчета, значение.

В статистике выделяют два основных метода исследования - сплошной и выборочный. При проведении выборочного исследования обязательным является соблюдение следующих требований: репрезентативность выборочной совокупности и достаточное число единиц наблюдений. При выборе единиц наблюдения возможны ошибки смещения, т.е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объектив­ными и закономерными. При определении степени точности выборочно­го исследования оценивается величина ошибки, которая может прои­зойти в процессе выборки - случайная ошибка репрезентативности (m) -является фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования и аналогичными величинами, которые были бы получены при проведении исследования на гене­ральной совокупности.

Оценка достоверности результатов исследования предусматривает определение:

1. ошибки репрезентативности

2. доверительных границ средних (или относительных) величин в генеральной совокупности

3. достоверности разности средних (или относительных) величин (по критерию t)

Расчет ошибки репрезентативности (mм) средней арифмети­ческой величины (М):

, где σ - среднее квадратическое отклонение; n - численность выборки (>30).

В клинических и экспериментальных работах довольно часто приходится использовать малую выборку, когда число наблюдений меньше или равно 30. При малой выборке для расчета ошибок репрезентатив­ности, как средних, так и относительных величин, число наблюде­ний уменьшается на единицу, т.е.

; .

Величина ошибки репрезентативности зависит от объема выборки: чем больше число наблюдений, тем меньше ошибка. Для оценки достоверности выборочного показателя принят следующий подход: показатель (или средняя величина) должен в 3 раза превышать свою ошибку, в этом случае он считается достоверным.








ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.