|
Ошибка репрезентативности средних величин, методика расчета, значение.Ошибка репрезентативности средних величин, методика расчета, значение. В статистике выделяют два основных метода исследования - сплошной и выборочный. При проведении выборочного исследования обязательным является соблюдение следующих требований: репрезентативность выборочной совокупности и достаточное число единиц наблюдений. При выборе единиц наблюдения возможны ошибки смещения, т.е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объективными и закономерными. При определении степени точности выборочного исследования оценивается величина ошибки, которая может произойти в процессе выборки - случайная ошибка репрезентативности (m) -является фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования и аналогичными величинами, которые были бы получены при проведении исследования на генеральной совокупности. Оценка достоверности результатов исследования предусматривает определение: 1. ошибки репрезентативности 2. доверительных границ средних (или относительных) величин в генеральной совокупности 3. достоверности разности средних (или относительных) величин (по критерию t) Расчет ошибки репрезентативности (mм) средней арифметической величины (М): , где σ - среднее квадратическое отклонение; n - численность выборки (>30). В клинических и экспериментальных работах довольно часто приходится использовать малую выборку, когда число наблюдений меньше или равно 30. При малой выборке для расчета ошибок репрезентативности, как средних, так и относительных величин, число наблюдений уменьшается на единицу, т.е. ; . Величина ошибки репрезентативности зависит от объема выборки: чем больше число наблюдений, тем меньше ошибка. Для оценки достоверности выборочного показателя принят следующий подход: показатель (или средняя величина) должен в 3 раза превышать свою ошибку, в этом случае он считается достоверным. Понятие о корреляционном анализе. Корреляционный анализ - метод, позволяющий обнаружить зависимость между несколькими случайными величинами.Допустим, проводится независимое измерение различных параметров у одного типа объектов. Из этих данных можно получить качественно новую информацию - о взаимосвязи этих параметров. Например, измеряем рост и вес человека, каждое измерение представлено точкой в двумерном пространстве: Несмотря на то, что величины носят случайный характер, в общем наблюдается некоторая зависимость - величины коррелируют.В данном случае это положительная корреляция (при увеличении одного параметра второй тоже увеличивается). Если Взаимосвязь между переменными необходимо охарактеризовать численно, вводится коэффициент корреляции. Он рассчитывается следующим образом: Есть массив из n точек { x1,i, x2,i } Рассчитываются средние значения для каждого параметра: И коэффициент корреляции: r изменяется в пределах от -1 до 1. В данном случае это линейный коэффициент корреляции, он показывает линейную взаимосвязь между x1 и x2: r равен 1 (или -1), если связь линейна. Коэффициент r является случайной величиной, поскольку вычисляется из случайных величин. Для него можно выдвигать и проверять следующие гипотезы: 1. Коэффициент корреляции значимо отличается от нуля (т.е. есть взаимосвязь между величинами) 2. Отличие между двумя коэффициентами корреляции значимо: Ошибка репрезентативности средних величин, методика расчета, значение. В статистике выделяют два основных метода исследования - сплошной и выборочный. При проведении выборочного исследования обязательным является соблюдение следующих требований: репрезентативность выборочной совокупности и достаточное число единиц наблюдений. При выборе единиц наблюдения возможны ошибки смещения, т.е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объективными и закономерными. При определении степени точности выборочного исследования оценивается величина ошибки, которая может произойти в процессе выборки - случайная ошибка репрезентативности (m) -является фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования и аналогичными величинами, которые были бы получены при проведении исследования на генеральной совокупности. Оценка достоверности результатов исследования предусматривает определение: 1. ошибки репрезентативности 2. доверительных границ средних (или относительных) величин в генеральной совокупности 3. достоверности разности средних (или относительных) величин (по критерию t) Расчет ошибки репрезентативности (mм) средней арифметической величины (М): , где σ - среднее квадратическое отклонение; n - численность выборки (>30). В клинических и экспериментальных работах довольно часто приходится использовать малую выборку, когда число наблюдений меньше или равно 30. При малой выборке для расчета ошибок репрезентативности, как средних, так и относительных величин, число наблюдений уменьшается на единицу, т.е. ; . Величина ошибки репрезентативности зависит от объема выборки: чем больше число наблюдений, тем меньше ошибка. Для оценки достоверности выборочного показателя принят следующий подход: показатель (или средняя величина) должен в 3 раза превышать свою ошибку, в этом случае он считается достоверным. ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|