Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Раздел 1. Методы психофизиологических исследований





Раздел 1. Методы психофизиологических исследований

Тезисы

Каковы основные методы регистрации физиологических процессов в психофизиологии? В чем преимущества электрических показателей физиологической активности? Каковы основные методы психофизиологических исследований?

 

Методы психофизиологических исследований — комплекс методов, используемых для изучения физиологического обеспечения психических процессов.

В психофизиологии основными методами регистрации физиологических процессов являются электрофизиологические методы. В физиологической активности клеток, тканей и органов особое место занимает электрическая составляющая. Электрические потенциалы отражают физико-химические следствия обмена веществ, сопровождающие все основные жизненные процессы, и поэтому являются исключительно надежными, универсальными и точными показателями течения любых физиологических процессов. Электрические показатели, по сравнению с другими, наиболее демонстративны, таким образом, они являются важным средством обнаружения деятельности. Единообразие потенциалов действия в нервной клетке, нервном волокне, мышечной клетке, как у человека, так и у животных говорит об универсальности этих показателей. Точность электрических показателей, т.е. их временное и динамическое соответствие физиологическим процессам, основана на быстрых физико-химических механизмах генерации потенциалов, являющихся неотъемлемым компонентом физиологических процессов в нервной или мышечной структуре.

К перечисленным преимуществам электрических показателей физиологической активности следует добавить и неоспоримые технические удобства их регистрации: помимо специальных электродов, для этого достаточно универсального усилителя биопотенциалов, который скоммутирован с компьютером, имеющим соответствующее программное обеспечение. И, что важно для психофизиологии, большую часть этих показателей можно регистрировать, никак не вмешиваясь в изучаемые процессы и не травмируя объект исследования. К наиболее широко используемым методам относятся регистрация импульсной активности нервных клеток, регистрация электрической активности кожи, электроэнцефалография, электроокулография, электромиография и электрокардиография. В последнее время в психофизиологию внедряется новый метод регистрации электрической активности мозга — магнитоэнцефалография и изотопный метод (позитронноэмиссионная номография).



Основные методы психофизиологических исследований:

  • регистрация импульсной активности нервных клеток;
  • электроэнцефалография (ЭЭГ);
  • магнитоэнцефалография (МЭГ);
  • позитронно-эмиссионная томография мозга (ПЭТ);
  • окулография;
  • электромиография;
  • электрическая активность кожи (ЭАК).

 

Регистрация импульсной активности нервных клеток

Изучение активности нервных клеток, или нейронов, как целостных морфологических и функциональных единиц нервной системы, безусловно, остается базовым направлением в психофизиологии. Одним из показателей активности нейронов являются потенциалы действия — электрические импульсы. Современные технические возможности позволяют регистрировать импульсную активность нейронов у животных в свободном поведении и, таким образом, сопоставлять эту активность с различными поведенческими показателями. В редких случаях в условиях нейрохирургических операций исследователям удается зарегистрировать импульсную активность нейронов у человека.

Поскольку нейроны имеют небольшие размеры (несколько десятков микрон), то и регистрация их активности осуществляется с помощью подводимых вплотную к ним специальных отводящих микроэлектродов. Свое название они получили потому, что диаметр их регистрирующей поверхности составляет около одного микрона. Микроэлектроды бывают металлическими и стеклянными. Металлический микроэлектрод представляет собой стержень из специальной высокоомной изолированной проволоки со специальным способом заточенным регистрирующим кончиком. Стеклянный микроэлектрод — пирексовая тонкая трубочка (диаметр около 1 мм) с тонким незапаянным кончиком, заполненная раствором электролита. Электрод фиксируется в специальном микроманипуляторе, укрепленном на черепе исследуемого, и коммутируется с усилителем. С помощью микроманипулятора электрод через отверствие в черепе пошагово вводят в мозг. Длина шага составляет несколько микрон, что позволяет подвести регистрирующий кончик электрода очень близко к нейрону, не повреждая его. Подведение электрода к нейрону осуществляется либо вручную, и в этом случае животное должно находиться в состоянии покоя, либо автоматически на любом этапе поведения животного. Усиленный сигнал поступает на монитор и записывается на магнитную ленту или в память компьютера. При «подходе» кончика электрода к активному нейрону экспериментатор видит на мониторе появление импульсов, амплитуда которых при дальнейшем осторожном продвижении электрода постепенно увеличивается. Когда амплитуда импульсов начинает значительно превосходить фоновую активность мозга, электрод больше не подводят, чтобы исключить возможность повреждения мембраны нейрона.

 

Электроэнцефалография (ЭЭГ)

Среди методов электрофизиологического исследования ЦНС человека наибольшее распространение получила регистрация колебаний электрических потенциалов мозга с поверхности черепа — электроэнцефалограмма. Предполагается, что электроэнцефалограмма (ЭЭГ) в каждый момент времени отражает суммарную электрическую активность клеток мозга.

ЭЭГ регистрируют с помощью наложенных на кожную поверхность головы (скальп) отводящих электродов, скоммутированных в единую цепь со специальной усилительной техникой. Увеличенные по амплитуде сигналы с выхода усилителей можно записать на магнитную ленту или в память компьютера для последующей статистической обработки. Для минимизации контактного сопротивления между электродом и скальпом на месте наложения электрода тщательно раздвигают волосы, кожу обезжиривают раствором спирта и между электродом и кожей кладут специальную электропроводную пасту. Для исключения электрохимических процессов на границе электрод — электролит (паста), приводящих к собственным электрическим потенциалам, поверхность электродов покрывают электропроводными неполяризующимися составами, например, хлорированным серебром.

Как любые электрические потенциалы, ЭЭГ всегда измеряется между двумя точками. Существуют два способа регистрации ЭЭГ — биполярный и монополярный. При биполярном отведении регистрируется разность потенциалов между двумя активными электродами. Этот метод применяется в клинике для локализации патологического очага в мозге, но он не позволяет определить, какие колебания возникают под каждым из двух электродов и каковы их амплитудные характеристики. В психофизиологии общепринятым считается метод монополярного отведения. При монополярном методе отведения регистрируется разность потенциалов между различными точками на поверхности головы по отношению к какой-то одной индифферентной точке. В качестве индифферентной точки берут такой участок на голове или лице, на котором какие-либо электрические процессы минимальны и их можно принять за нуль: обычно это — мочка уха или сосцевидный отросток черепа. В этом случае с электрода, наложенного на скальп, регистрируются изменения потенциала с определенного участка мозга.

Отводящие электроды можно накладывать на самые разные участки поверхности головы с учетом проекции на них тех или иных областей головного мозга. На заре применения ЭЭГ исследователи так и делали, но при этом они обязательно предоставляли в своих отчетах и публикациях координаты расположения электродов. В настоящее время применяется единая стандартная система наложения электродов — система «10—20».

 

Рис. п. 1.1. Схема расположения электроэнцефалографических электродов на скальпе
Рис. п. 1.2. Основные ритмы электроэнцефалограммы

 

Рис. п. 1.3. Артефакты на электроэнцефалограмме  

 

     

 

Магнитоэнцефалография (МЭГ)

Активность мозга всегда представлена синхронной активностью большого количества нервных клеток, сопровождаемой слабыми электрическими токами, которые создают магнитные поля. Регистрация этих полей неконтактным способом позволяет получить так называемую магнитоэнцефалограмму (МЭГ). МЭГ регистрируют с помощью сверхпроводящего квантового интерференционного устройства — магнетометра. Предполагается, что если ЭЭГ больше связана с радиальными по отношению к поверхности коры головного мозга источниками тока (диполями), что имеет место на поверхности извилин, то МЭГ больше связана с тангенциально направленными источниками тока, имеющими место в корковых областях, образующих борозды. Если исходить из того, что площадь коры головного мозга в бороздах и на поверхности извилин приблизительно одинакова, то несомненно, что значимость магнитоэнцефалографии при изучении активности мозга сопоставима с электроэнцефалографией. Электрическое и магнитное поля взаимоперпендикулярны, поэтому при одновременной регистрации обоих полей можно получить взаимодополняющую информацию об исходном источнике генерации тех или иных потенциалов. МЭГ может быть представлена в виде профилей магнитных полей на поверхности черепа либо в виде кривой линии, отражающей частоту и амплитуду изменения магнитного поля в определенной точке скальпа. МЭГ дополняет информацию об активности мозга, получаемую с помощью электроэнцефалографии.

 

Окулография

Движения глаз являются важным показателем в психофизиологическом эксперименте. Регистрация движений глаз называется окулографией.

С одной стороны, окулографический показатель необходим для выявления артефактов (явление, процесс, предмет, свойство предмета или процесса, появление которого в наблюдаемых условиях по естественным причинам невозможно или маловероятно) от движений глаз в ЭЭГ, с другой стороны, этот показатель выступает и как самостоятельный предмет исследования, и как составляющая при изучении субъекта в деятельности. Амплитуду движения глаз определяют в угловых градусах. Существует восемь основных видов движений глаз. Три движения — тремор (мелкие, частые колебания амплитудой 20—40 угловых секунд), дрейф (медленное, плавное перемещение глаз, прерываемое микроскачками) и микросаккады (быстрые движения продолжительностью 10—20 мс и амплитудой 2—50 угловых минут) относят к микродвижениям, направленным на сохранение местоположения глаз в орбите.

Из макродвижений, связанных с изменением местоположения глаз в орбите, наибольший интерес в психофизиологическом эксперименте представляют макросаккады и прослеживающие движения глаз. Макросаккады отражают обычно произвольные быстрые и точные смещения взора с одной точки на другую, например, при рассматривании картины, при быстрых точностных движениях руки (рис. 1.2) и т.д. Их амплитуда варьирует в пределах от 40 угловых минут до 60 угловых градусов. Прослеживающие движения глаз — плавные перемещения глаз при отслеживании перемещающегося объекта в поле зрения.

 

 

Рис. 1.2. Координированные движения глаз и головы в сторону появившегося в боковом поле зрения светового пятна

 

Наиболее распространенным методом регистрации движений глаз является электроокулография. По сравнению с другими окулографическими методами, такими, как фотооптический, фотоэлектрический и электромагнитный, электроокулография исключает контакт с глазным яблоком, может проводиться при любом освещении и тем самым не нарушает естественных условий зрительной активности. В основе электроокулографии лежит дипольное свойство глазного яблока — его роговица имеет положительный заряд относительно сетчатки (корнеоретинальный потенциал). Электрическая и оптическая оси глазного яблока практически совпадают, и поэтому электроокулограмма (ЭОГ) может служить показателем направления взора. При движении глаза угол его электрической оси изменяется, что приводит к изменению потенциалов, наводимых диполем глазного яблока на окружающие ткани. Именно эти потенциалы регистрируются электроокулографическим методом.

Две пары неполяризующихся отводящих электродов с электропроводной пастой накладывают на обезжиренные участки кожи в следующих точках:

а) около височных углов обеих глазных щелей — для регистрации горизонтальной составляющей движений;

б) посередине верхнего и нижнего края глазной впадины одного из глаз— для регистрации вертикальной составляющей движений.

Контактное сопротивление на электродах, как правило, позволяет избегать артефактов от ЭЭГ и мышечной активности. Потенциалы, снимаемые между электродами в каждой паре, усиливаются и поступают на монитор, а затем записываются на магнитные носители магнитофона или ЭВМ.

Линия на ЭОГ при неподвижном взоре, направленном прямо, принимается за нулевую. При повороте глаз вправо на электроде, расположенном на височном углу правого глаза, потенциал становится более положительным по отношению к нулевой линии, а на электроде слева — отрицательным. При повороте глаз влево это соотношение потенциалов на электродах меняется. При направлении взора вверх на электроде, расположенном на верхнем крае глазной впадины, потенциал становится положительным по отношению к нулевой линии, а на электроде нижнего края — отрицательным. Амплитуда движений глаз в данном случае измеряется в милливольтах, но после проведения калибровочных движений глаз, т.е. движений с одной точки на другую с известным расстоянием в угловых градусах, амплитуду можно представить в угловых градусах. Итак, по смещению регистрируемых потенциалов горизонтальной и вертикальной составляющих можно определить направление, а по величине этих смещений— величину углового смещения оптических осей глаз.

Движения глаз, особенно вертикальные, а также моргания вызывают выраженные артефакты в ЭЭГ, поэтому регистрация ЭЭГ без регистрации ЭОГ в психофизиологических экспериментах считается недопустимой ошибкой.

 

Электромиография

Электромиография — это регистрация суммарных колебаний потенциалов, возникающих как компонент процесса возбуждения в области нервномышечных соединений и мышечных волокнах при поступлении к ним импульсов от мотонейронов спинного или продолговатого мозга. В настоящее время применяются различные варианты подкожных (игольчатых) и накожных (поверхностных) электродов. Последние в силу их атравматичности и легкости наложения имеют более широкое применение.

Обычно пользуются биполярным отведением, помещая один электрод на участке кожи над серединой («двигательной точкой») мышцы, а второй — на 1—2 см дистальнее (дальше). При монополярном отведении один электрод помещают над «двигательной точкой» исследуемой мышцы, второй— над ее сухожилием или на какой-либо отдаленной точке (на мочке уха, на грудине и т.д.). Требования к электродам и к их наложению такие же, как и при наложении электроэнцефалографических или электроокулографических электродов.

Во время покоя скелетная мускулатура всегда находится в состоянии легкого тонического напряжения, что проявляется на электромиограмме (ЭМГ) в виде низкоамплитудных (5—30 мкВ) колебаний частотой 100 Гц и более. Даже при локальном отведении электроактивности от расслабленной мышцы полное отсутствие колебаний потенциала в отдельной двигательной единице (мышечном волокне) отсутствует; обычно наблюдаются колебания частотой 6—10 Гц. При готовности к движению, мысленному его выполнению, при эмоциональном напряжении и других подобных случаях, т.е. в ситуациях, не сопровождающихся внешне наблюдаемыми движениями, тоническая ЭМГ возрастает как по амплитуде, так и по частоте. Например, чтение «про себя» сопровождается увеличением ЭМГ активности мышц нижней губы, причем чем сложнее или бессмысленнее текст, тем выраженное ЭМГ. При мысленном письме у правшей усиливается мышечная активность поверхностных сгибателей правой руки, выявляемых на ЭМГ.

Произвольное движение сопровождается определенной последовательностью активации различных мышц: амплитуда ЭМГ одних мышц увеличивается до движения, других — в процессе движения (рис. 1.2).

Амплитуда и частота ЭМГ прежде всего определяются количеством возбужденных двигательных единиц, а также степенью синхронизации развивающихся в каждой из них колебаний потенциала. Как было показано в специальных исследованиях, амплитуда ЭМГ нарастает градуально. Это, по-видимому, связано с тем, что сначала активируются обладающие большей возбудимостью двигательные единицы, а затем вместе с ними начинают активироваться и другие двигательные единицы. Общая амплитуда ЭМГ может достигать 1—2 мВ. ЭМГ становится особенно информативной в комплексе с другими показателями (см. рис. 1.2).

 

Вопросы для самопроверки

  • В чем специфика применения электрических показателей для анализа физиологической активности?
  • Охарактеризуйте единую стандартную систему наложения электродов (система «10—20»).
  • В чем заключаются особенности электрических и магнитных полей?
  • Каково предназначение позитронно-эмиссионной томографии мозга?
  • Каким образом происходит регистрация движения глаз?
  • Опишите процесс осуществления электромиографии.
  • Каковы ведущие способы исследования электрической активности кожи?

Основы профессиографии

Таблица 2.1.

Вопросы для самопроверки

Раскройте понятия: деятельность, труд, досуг, профессия, специальность, профессиография.

Охарактеризуйте основные виды деятельности. Проведите анализ форм деятельности человека. Каковы параметры трудовой деятельности?

Раскройте типологию профессий в зависимости от предмета труда.

В чем заключаются психофизиологические основы способностей?

Укажите специфику применения методов психологической диагностики.


Понятие о профориентации

Профессиональная ориентация (профориентация или ориентация на профессию) — процесс определения индивидом того вида трудовой деятельности, в которой он хочет себя проявить, осознание своих склонностей и способностей к этому виду деятельности и осведомленность о каналах и средствах приобретения знаний, умений и навыков для овладения конкретной профессией.

Профессиональная ориентация — комплекс взаимосвязанных экономических, социальных, медицинских, психологических и педагогических мероприятий, направленных на формирование профессионального призвания, на выявление способностей, интересов, пригодности и других факторов, влияющих на выбор профессии или на смену рода деятельности.

Профориентационная работа со взрослым населением в России только начинает складываться в единую систему, так как вся предшествующая система профориентации развивалась под влиянием задач профессионального обучения и воспитания молодежи. В новых условиях требуется иной подход к вопросам профориентации. Основные ее задачи — помочь каждому человеку найти свое место в жизни, отвечающее его психофизиологическим данным, способностям, призванию и в то же время потребностям общественного производства.

Принципиальные цели ориентации на конкретную организацию состоят в следующем:

- Уменьшить стартовые издержки. Эффективная ориентация уменьшает стартовые затраты и помогает новому работнику скорее достигнуть общих стандартов исполнения работы.

- Снизить испытываемые новым работником боязнь провалов в работе и неопределенность.

- Сократить текучесть рабочей силы. Текучесть высока как раз в период ломок, изменений, поэтому эффективное ориентирование призвано свести на нет эту дорогостоящую реакцию.

- Экономить время руководителя и сотрудников по работе. Неправильно сориентированный работник все же должен выполнять свою работу, но требует при этом помощи. Обычно людьми, которые должны оказать эту помощь, оказываются сотрудники и непосредственные руководители, тратящие на это свое время.

- Развивать положительное отношение сотрудника к работе, реальное восприятие, а, следовательно, удовлетворенность работой.

Профориентационная работа может быть ориентирована: на конкретную организацию; на трудовую деятельность; на рабочую специальность. Здесь главными заинтересованными лицами выступают специальные учебные заведения и предприятия, т.е. те организации, где осуществляется профессиональная подготовка.

 

Вопросы для самопроверки

Каково понятие профориентации?

Охарактеризуйте различные формы профориентации.

Какова суть профессиональной пригодности и профессионального отбора?

Раскройте суть психофизиологии профотбора и профпригодности

Раскройте особенности психофизиологии работоспособности.

Опишите стадии кривой работоспособности.

 


Вопросы для самопроверки

Каковы компоненты психофизиологической системы адаптации?

Какую роль играют функциональные системы в процессе адаптации человека?

 


Вопросы для самопроверки

В чем заключается понятие функционального состояния?

Раскройте подходы к определению функциональных состояний.

Каковы методы диагностики функциональных состояний?

В чем особенности психофизиологических функциональных состояний?

Каким образом функциональное состояние отражается на поведении людей?


Функции эмоций

Исследователи, отвечая на вопрос о том, какую роль играют эмоции в жизнедеятельности живых существ, выделяют несколько регуляторных функций эмоций: отражательную (оценочную), побуждающую, подкрепляющую, переключательную, коммуникативную.

Отражательная функция эмоций выражается в обобщенной оценке событий. Эмоции охватывают весь организм и представляют почти мгновенную и интегральную оценку поведения в целом, что позволяет определить полезность и вредность воздействующих на человека факторов еще до того, как будет определена локализация вредного воздействия. Примером может служить поведение человека, получившего травму конечности. Ориентируясь на боль, он немедленно находит такое положение, которое уменьшает болевые ощущения.

Эмоция как особое внутреннее состояние и субъективное переживание выполняет функцию оценки обстоятельств ситуации на основе возникшей потребности и интуитивного представления о возможностях ее удовлетворения. Эмоциональная оценка отличается от осознанных когнитивных оценочных операций ума, она выполняется на чувственном уровне.

Побуждающая функция. Предвосхищающие эмоции успешно изучались в составе мыслительной деятельности при решении творческих задач (шахматных). Эмоции предвосхищения связаны с появлением переживания догадки, идеи решения, которая еще не вербализована.

Подкрепляющая функция. Известно, что эмоции принимают самое непосредственное участие в процессах обучения и памяти. Значимые события, вызывающие эмоциональные реакции, быстрее и надолго запечатлеваются в памяти. Так, у сытой кошки нельзя выработать условные пищевые рефлексы. Для успешного обучения необходимо наличие мотивационного возбуждения, в данном случае отражающегося в чувстве голода. Однако соединения индифферентного раздражителя с голодовым возбуждением еще недостаточно для выработки условных пищевых рефлексов. Требуется третий компонент — воздействие фактора, способного удовлетворить существующую потребность, т.е. пищи.

Переключательная функция эмоций состоит в том, что они часто побуждают человека к изменению своего поведения. Данная функция наиболее ярко обнаруживается в экстремальных ситуациях, когда возникает борьба между естественным для человека инстинктом самосохранения и социальной потребностью следовать определенной этической норме. Конфликт потребностей переживается в форме борьбы между страхом и чувством долга, страхом и стыдом. Исход зависит от силы побуждений, от личностных установок субъекта.

Важной функцией эмоций является коммуникативная функция. Мимика, жесты, позы, выразительные вздохи, изменение интонации являются «языком человеческих чувств» и позволяют человеку передавать свои переживания другим людям, информировать их о своем отношении к явлениям, объектам и т.д.

 

Степень активации эмоций

Полученные экспериментальные факты показывают, что даже в том случае, когда эмоциональное напряжение связано с мотивацией, посторонней для выполняемой человеком работы, это напряжение не оказывает однозначно дезорганизующего влияния. Умеренная степень эмоционального напряжения способна повысить эффективность деятельности и уменьшить количество допускаемых субъектом ошибок. Благотворное влияние эмоций особенно отчетливо проявляется в случае, когда эти эмоции возникают на базе потребности, мотивирующей данную деятельность субъекта, и органически с ней связаны. Именно здесь мы встречаемся с адаптивно-компенсаторной функцией положительных эмоций, которая реализуется через влияние на потребность, инициирующую поведение. В трудной ситуации с низкой вероятностью достижения цели даже небольшой успех (увеличение вероятности) порождает положительную эмоцию воодушевления, которая усиливает потребность достижения цели согласно правилу, вытекающему из «формулы эмоций».

Примером компенсаторной функции эмоций на популяционном уровне может служить подражательное поведение, характерное для эмоционально возбужденного мозга. Когда субъект не располагает данными или временем для самостоятельного и вполне обоснованного решения, ему остается положиться на пример других членов группы. Поскольку вероятность подкрепления сигналов, исходящих от них, остается проблематичной, имитационное поведение далеко не всегда является оптимальным, а в случае массовой паники нередко ведет к катастрофическим последствиям.

 

Вопросы для самопроверки

Каково понятие эмоций?

Каковы виды эмоциональных явлений, в чем их особенности?

Раскройте основные функции эмоций.

В чем сущность действия механизма компенсаторной функции эмоций?

Каким образом эмоции оказывают влияние на деятельность человека?

Чем характеризуется степень активации эмоций?


Модулирующая система мозга

Модулирующая система мозга реализует свои функции через особый класс функциональных систем, регулирующих процессы активации в составе различных видов деятельности. Она регулирует цикл бодрствование — сон, стадии и фазы сна, уровни и специфику функциональных состояний во время бодрствования, а также процессы внимания благодаря ее способности создавать как локальные, так и генерализованные эффекты активации и инактивации в нервной системе.

 

Вопросы для самопроверки

Каково понятие внимания?

Чем характеризуется процесс внимания?

Каковы психофизиологические основы внимания?

Каковы механизмы внимания с позиции системной психофизиологии?

Как соотносится внимание и следующие категории: активация, функциональное состояние, бодрствование?


Психофизиология памяти

Тезисы

Что такое память? Каким образом происходит временная организация памяти? Каковы особенности исследования градиента ретроградной амнезии? В чем заключаются особенности стадий фиксации памяти? Каковы характеристики кратковременной и долговременной памяти? Как соотносятся память и научение?

 

Классификация видов памяти.

По участию воли в процессе запоминания:

- непроизвольная память означает запоминание и воспроизведение автоматически, без всяких усилий;

- произвольная память подразумевает случаи, когда присутствует конкретная задача, и для запоминания используются волевые усилия.

По психической активности, которая преобладает в деятельности:

- двигательная (кинетическая) память — запоминание и сохранение, а при необходимости воспроизведение многообразных сложных движений. Эта память активно участвует в развитии двигательных (трудовых, спортивных) умений и навыков.

- эмоциональная память — память на переживания.

- словесно-логическая память — это разновидность запоминания, когда большую роль в процессе запоминания играет слово, мысль, логика.

- образная память связана с запоминанием и воспроизведением чувственных образов предметов и явлений, их свойств, отношений между ними. Разновидности: зрительная, слуховая, осязательная, обонятельная, вкусовая.

По продолжительности сохранения информации:

- мгновенная (иконическая) память. Данная память удерживает материал, который был только что получен органами чувств, без какой-либо переработки информации. Длительность данной памяти — от 0,1 до 0,5 с.;

- кратковременная память — хранение информации в течение короткого промежутка времени: в среднем около 20 с. Этот вид запоминания может происходить после однократного или очень краткого восприятия. Данная память также работает без сознательного усилия для запоминания, но с установкой на будущее воспроизведение;

- оперативная память — память, рассчитанная на сохранение информации в течение определенного, заранее оговоренного срока. Срок хранения информации колеблется от нескольких секунд до нескольких дней;

- долговременная память — память, способная хранить информацию в течение неограниченного срока.

 

Стадии фиксации памяти

Память и научение

Понятия «память» и «научение» традиционно относят к поведенческим категориям, они применимы для характеристики целостного организма. Память и научение — неотделимые процессы. Научение обеспечивает постоянное пополнение и изменение наших знаний, а также приобретение новых навыков, умений. В отличие от научения процесы памяти ответственны не только за усвоение (фиксацию), но и за сохранение и воспроизведение (извлечение) информации. В самом широком смысле слова научение можно определить как приспособительное изменение поведения, обусловленное прошлым опытом. Память необходима для научения, так как она представляет собой механизм, с помощью которого накапливался прошлый опыт, который может стать источником адаптивных изменений поведения.

Научение— совокупность процессов, обеспечивающих приобретение индивидуальной (фенотипической) памяти, вызывающей приспособительную модификацию поведения.

Научение требует определенного времени, условий и реализуется с помощью нейрофизиологических механизмов разного уровня (межклеточного, внутриклеточного, молекулярного).

Существует много разновидностей научения. Они могут быть разделены на несколько групп. Наиболее часто выделяют просто научение, к которому относят привыкание, сенситизацию (процесс, противоположный привыканию, выражается в снижении порога при повторном предъявлении раздражителей; вследствие сенситизации организм начинает более эффективно реагировать на ранее нейтральный раздражитель), ассоциативное научение, включающее выработку классического условного рефлекса, инструментального (или оперантного) рефлекса, одномоментное научение, и сложномоментное научение (импринтинг (быстрая и необратимая форма запоминания), латентное обучение, обучение на основе подражания, когнитивное обучение: формирование декларативной памяти (предполагает как хранение информации о прошлом опыте, так и доступ к ней, когда возникает необходимость в ее немедленном использовании)).

Привыкание как простейшая форма научения выражается в ослаблении поведенческой реакции при повторных предъявлениях стимула. От утомления и истощения привыкание отличается тем, что реакцию вновь можно вызвать простым изменением стимула.

Ярким примером поведенческого привыкания является угасание безусловного ориентировочного рефлекса (или его отдельных компонентов). С повторением стимула теряется новизна, что и приводит к привыканию. Привыкание в системе ориентировочного рефлекса получило название негативного научения, состоящего в том, что стимул по мере его повторения теряет способность вызывать ту реакцию, которую он ранее вызывал. Привыкание или угасание ориентировочного рефлекса связывают с формированием «нервной модели стимула» — его многомерной энграммы, которая и тормозит систему активации ориентировочного рефлекса.

Сенситизация— другая форма простейшего научения, выражающаяся в усилении рефлекторной реакции под влиянием сильного или повреждающего постороннего стимула. Сенситизация — это не просто противоположность привыкания. Она является результатом активации модулирующей системы мозга, возникшей на сильный побочный раздражитель. Усиление рефлекса вызвано изменением функционального состояния организма.

 

Вопросы для самопроверки

Охарактеризуйте память и ее виды.

Что такое энграмма?

Какова специфика градиента ретроградной амнезии?

Проанализируйте стадии фиксации памяти.

Каковы особенности кратковременной и долговременной памяти?

В чем заключается сущность научения?

 


Мозговые центры и сознание

Клиницистами давно замечено, что сознание сохраняется после удаления или поражения относительно небольшого участка коры больших полушарий, но оно неизбежно исчезает, теряется, если в результате патологического воздействия нарушаются некоторые подкорковые структуры, в первую очередь в диэнцефальной области.

Значение глубоких структур мозга. Открытие в 50-е гг. ретикулярной формации, и в частности неспецифического таламуса, и установление их роли в активации коры больших полушарий позволило ряду исследователей отождествить сознание с активностью этих систем. Эксперименты известных нейрофизиологов У. Пенфилда, Х. Джаспера и ряда других, подтвердившие важнейшую роль подкорковых структур, и прежде всего ретикулярной формации, для проявления сознания, дали основание предположить существование гипотетической центрэнцефалической системы, отвечающей за сознание.

Хотя в дальнейших исследованиях идея центрэнцефалической системы была отвергнута, но значение ствола мозга и подкорки в обеспечении функций сознания не вызывает сомнения. Модулирующие системы мозга (ретикулярная формация и лимбическая система) имеют решающее значение не только для поддержания уровня бодрствования, но и для обеспечения энергетического аспекта сознания. Кроме того, по-видимому, структуры подкорки могут определять не только энергетическую, но и информационную составляющую сознания.

Видная роль здесь отводится такой структуре как гиппокамп. Значение гиппокампа в обеспечении содержания сознания объясняется той ролью, которую тот играет в процессах памяти (см. тему 7 п. 7.2). Однако, несмотря на несомненный вклад гиппокампа и лимбической системы в целом в обеспечение содержания сознания, информационный аспект сознания формируется в основном за счет деятельности коры больших полушарий.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2020 zdamsam.ru Размещенные материалы защищены законодательством РФ.