Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Принципы, методы и методики измерений





Наряду с рассмотренными выше основными характеристиками измерений, в теории измерений рассматриваются такие их характеристики, как принцип и метод измерений.

Принципизмерений физическое явление или эффект, положенное в основу измерения. Например, использование силы тяжести при измерении массы взвешиванием.

Метод измерений – прием или совокупность приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Как правило, метод измерений обусловлен устройством средств измерений. Некоторыми примерами распространенных методов измерений являются следующие методы.

Метод непосредственной оценки – метод, при котором значение величины определяют непосредственно по показывающему средству измерений. Например, взвешивание на циферблатных весах или измерение давления пружинным манометром.

Дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами. Этот метод может дать очень точные результаты. Так, если разность составляет 0,1 % измеряемой величины и оценивается прибором с точностью до 1 %, то точность измерения искомой величины составит уже 0,001 %. Например, при сравнении одинаковых линейных мер, где разность между ними определяется окулярным микрометром, позволяющим ее оценить до десятых долей микрона.

Нулевой метод измерений – метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Мера – средство измерений, предназначенное для воспроизведения и хранения физической величины. Например, измерение массы на равноплечных весах при помощи гирь. Принадлежит к числу очень точных методов.

Метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают величиной, воспроизводимой мерой. Например, измерение напряжения постоянного тока на компенсаторе сравнением с известной ЭДС нормального элемента. Результат измерения при этом методе либо вычисляют как сумму значения используемой для сравнения меры и показания измерительного прибора, либо принимают равным значению меры. Существуют различные модификации этого метода:

- метод измерения замещением (измеряемую величину замещают мерой с известным значением величины, например, при взвешивании поочередным помещением массы и гирь на одну и ту же чашку весов),

- метод измерений дополнением, в котором значение измеряемой меры дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.

Глава 5.

СИСТЕМЫ ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН

Основные понятия

Многообразие единиц физических величин на определенной ступени развития общества стало тормозить экономические, торговые и научные связи. Даже отдельные государства и их административные области для одних и тех же величин вводили свои единицы. В разных областях науки и техники появлялись свои, специфические единицы, удобные только именно для этой отрасли.

В связи с этим возникла тенденция к унификации единиц физических величин, необходимость в системах единиц, которые охватывали бы единицы величин как можно больших разделов науки и техники. Ниже приводятся основные понятия, связанные с единицами физических величин и их системами.

Система единиц физических величин — совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин. Например, международная система единиц (СИ).

Основная единица системы — единица основной физической величины в данной системе единиц.Основные единицы могут выбираться произвольно, поэтому для одной и той же системы величин может быть образовано несколько систем единиц.

Производная единица системы — единица производной физической величины системы единиц, образованная в соответствии уравнением, связывающим ее с основными единицами или с основными и уже определенными производными.

Системная и внесистемная единицы – единицы, входящие и не входящие в принятые системы единиц. Например, единицы, не входящие в СИ, разделяют на следующие группы:

1. допускаемые к применению наравне с единицами СИ без ограничения срока;

2. допускаемые к применению единицы относительных и логарифмических величин;

3. единицы, временно допускаемые к применению до принятия по ним соответствующих международных решений;

4. внесистемные единицы, применение которых в новых разработках не допускается.

Когерентная производная единица – единица физической величины, связанная с другими единицами системы единиц уравнением, в котором числовой коэффициент принят равным 1.

Когерентная система единиц физических величин – система единиц, состоящая из основных единиц и когерентных производных единиц.

Когерентные производные единицы образуются с помощью простейших уравнений между величинами, где числовые коэффициенты равны 1. Преимущества когерентной системы единиц - простота выполнения расчетов и использования системы.

Например, единица скорости [v] в СИ находится из уравнения:

где v - скорость; s - длина пройденного пути; t - время движения.

Если подставить вместо длины пути и времени обозначения их единиц СИ то единица скорости будет

= = 1 m/s.

Для образования единицы энергии может, например, использоваться уравнение с коэффициентом, отличным от единицы, например:

В этом случае для образования когерентной единицы в правую часть подставляются величины со значениями, дающие после умножения на коэффициент числовое значение, равное единице. Когерентная единица энергии в СИ образуется из выражения:

[E] = ½ (2 [m]× [v]2) = ½ (2 kg)×(1 m/s)2 = 1 kg × m/s2 × m = 1 N× m = 1J.

Единицей энергии СИ является джоуль, равный ньютон-метру. В данном примере он равен кинитической энергии тела массой 2 kg, движущегося со скоростью 1m/s.

Кратная и дольная единица величины - это единица, в целое число раз большая или меньшая системной единицы. Например, кратная - 1 километр, дольная - 1 см.

 

Метрическая система мер

1795 г во Франции был принят Закон о новых мерах и весах, который установил основную единицу длины – метр, равный десятимиллионной части четверти дуги меридиана, проходящего через Париж. Отсюда идет и название системы - метрическая. Были установлены и производные единицы: литр как мера вместимости жидких и сыпучих тел, грамм как единица веса (вес чистой воды при температуре 4 градуса Цельсия в объеме куба с ребром 0,01 м), ар как единица площади (площадь квадрата со стороной 10 м), стер как единица объема (куб с ребром 0,1 м) и секунда как единица времени (1/86400 часть средних солнечных суток). Позднее, в 1799 г. основной единицей массы стал килограмм и был изготовлен его платиновый прототип.

В 1875 г. была подписана Метрическая конвенция с целью обеспечения международного единства мер. В ее основу положены единицы длины и массы, а для образования кратных и дольных единиц использовалась десятичная система. Таким образом, была установлена метрическая система мер.

В настоящее время метрическая система мер принята в большинстве стран мира. Но существуют и другие системы. Например, английская система мер, в которой за основные единицы приняты фут, фунт и секунда.







ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.