Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Иммобилизация ферментов. Методы иммобилизации, их сравнительная характеристика и сферы практического применения.





Иммобилизация-это прикрепление фермента к нерастворенному носителю таким образом, чтобы фермент мог обмениваться с раствором молекулами субстрата и продукта.

Методы иммобилизации:

1. адсорбция на носителе

в качестве исходного носителя могут использоваться материалы (стекло, селикагель, оксид Al, природные минералы, природные полимеры-целлюлоза, колаген, синтетические полимеры-полиэтилен, полипропилен, нелоны). Происходит за счет электростатических сил, вандервальсевских взаимодействий, водородных связей. Между носителем и ферментом не образуются ковалентные связи. Это наиболее простой метод иммобилизации. Осуществляется перемешивания носителей с водным раствором фермента. Недостатки: могут переходить в раствор.

2. Включение в гель

Желатин, агар-агар, карагинан, альгенаты- распространенные глевые образования, синтетические гели-образователи-полимеры, получаемые по реакции поликонденсации.

Для получения таких биокатализаторов в водном растворе фермента проводят оеакцию гелеобразования, притом молекула фермента оказывается внутри снтчатой структуры геля.

1) Фермент должен просто удерживаться в структуре геля, чтобы его не вымыло.

2) Гель должен быть проницаемым для субстрата и продукта реакции

3. Ковалентное связывание с субстратом

Недостатки: молекула фермента может близко находиться к молекуле носителя; фермент связывается с своим активным центром, активности нет; для образования ковалентной связи может изменится структура фермента и он потеряет активность.

Спейсер- используется для удаления молекулы от носителя

4. Поперечная сшивка молекул фермента-несколько молекул фермента сшивают между собой. Для этого используется би-функциональные фермента.

5. Включение в полупроницаемые капсулы. Могут состоять из природных полимеров, причем сама капсула должна быть проницаема для продукта реакции и субстрата. Тип получаемой капсулы-липосома.

Организация и структура биотехнологических производств. Отличительные особенности биотехнологического производства от традиционных видов технологий. Преимущества и недостатки биотехнологических производств по сравнению с традиционными технологиями.

Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии разделяют на 2 большие группы: производство биомассы и получение продуктов метаболизма. Однако такая классификация не отражает наиболее существенных с технологической точки зрения аспектов промышленных биотехнологических процессов. В этом плане необходимо рассматривать стадии биотехнологического производства, их сходство и различие в зависимости от конечной цели биотехнологического процесса.

Существует 5 стадий биотехнологического производства.

Две начальные стадии включают подготовку сырья и биологически действующего начала. В процессах инженерной энзимологии они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Поддержание чистой культуры штамма-продуцента - главная задача любого микробиологического производства, поскольку высокоактивный, не претерпевший нежелательных изменений штамм может служить гарантией получения целевого продукта с заданными свойствами.

Третья стадия - стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит.

На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Для промышленных микробиологических процессов характерно, как правило, образование очень разбавленных растворов и суспензий, содержащих, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, находящихся в растворе в сравнимых концентрациях, весьма лабильных, легко подвергающихся термической деструкции.

Заключительная стадия биотехнологического производства - приготовление товарных форм продуктов. Общим свойством большинства продуктов микробиологического синтеза является их недостаточная стойкость к хранению, поскольку они склонны к разложению и в таком виде представляют прекрасную среду для развития посторонней микрофлоры. Это заставляет технологов принимать специальные меры для повышения сохранности препаратов промышленной биотехнологии. Кроме того, препараты для медицинских целей требуют специальных решений на стадии расфасовки и укупорки, так должны быть стерильными.

Основная цель биотехнологии - промышленное использование биологи­ческих процессов и агентов на основе получения высокоэффективных форм мик­роорганизмов, культур клеток и тканей растений и животных с заданными свой­ствами. Биотехнология возникла на стыке биологических, химических и техниче­ских наук.

Биотехнологический процесс - включает ряд этанов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов.

Биотехнологические процессы могут быть основаны на периодическом или непрерывном культивировании.

Во многих странах мира биотехнологии придается первостепенное значе­ние. Это связано с тем, что биотехнология имеет ряд существенных преиму­ществ перед другими видами технологий, например, химической.

1). Это, прежде всего, низкая энергоемкость. Биотехнологические процес­сы совершаются при нормальном давлении и температурах 20-40° С.

2). Биотехпологическое производство чаще базируется на использовании стандартного однотипною оборудования. Однотипные ферменты применяются для производства аминокислот, витаминов; ферментов, антибиотиков.

3). Биотехнологические процессы несложно сделать безотходными. Мик­роорганизмы усваивают самые разнообразные субстраты, поэтому отходы одного какого-то производства можно превращать в ценные продукты с помощью мик­роорганизмов в ходе другого производства.

4). Безотходность биотехнологических производств делает их экологиче­ски наиболее чистыми

5). Исследования в области биотехонологии не требуют крупных капи­тальных вложений, для их проведения не нужна дорогостоящая аппаратура.

К первоочередным задачам современной биотехнологии относятся -создание и широкое освоение:

1)новых биологически активных веществ и лекарственных препаратов для медицины (интерферонов, инсулина, гормонов роста, антител);

2)микробиологических средств защиты растений от болезней и вредите­

лей, бактериальных удобрений и регуляторов роста растений, новых высокопродуктивных и устойчивых к неблагоприятным факторам внешней среды гибридов сельскохозяйственных растений, полученных методами генетической и клеточной инженерии;

3)ценных кормовых добавок и биологически активных веществ (кормового белка, аминокислот, ферментов, витаминов, кормовых антибиотиков) для по­вышения продуктивности животноводства;

4)новых технологий получения хозяйственно-ценных продуктов для использования в пищевой, химической, микробиологической и других отраслях промышленности;

5)технологий глубокой и эффективной переработки сельскохозяйствен­ных, промышленных и бытовых отходов, использования сточных вод и газовоздушных выбросов для получения биогаза и высококачественных удобрений.

Традиционная (обычная) технология представляет собой разработки, отражающие средний уровень производства, достигнутый большинством производителей продукции в данной отрасли. Такая технология не обеспечивает ее покупателю значительных технико-экономических преимуществ и качество продукции по сравнению с аналогичной продукцией ведущих производителей, и рассчитывать на дополнительную (сверх средней) прибыль в данном случае не приходится. Ее преимуществами для покупателя являются сравнительно невысокая стоимость и возможность приобретения проверенной в производственных условиях технологии. Традиционная технология создается, как правило, в результате устаревания и широкомасштабного распространения прогрессивной технологии. Продажа такой технологии обычно осуществляется по ценам, компенсирующим продавцу издержки на ее подготовку и получение средней прибыли.

Преимущества биотехнологических процессов по сравнению с химической технологией биотехнология имеет следующие основные преимущества:

·возможность получения специфичных и уникальных природных веществ, часть из которых (например, белки, ДНК) еще не удается получать путем химического синтеза;

·проведение биотехнологических процессов при относительно невысоких температурах и давлениях;

·микроорганизмы имеют значительно более высокие скорости роста и накопления клеточной массы, чем другие организмы

·в качестве сырья в процессах биотехнологии можно использовать дешевые отходы сельского хозяйства и промышленности;

·биотехнологические процессы по сравнению с химическими обычно более экологичны, имеют меньше вредных отходов, близки к протекающим в природе естественным процессам;

·как правило, технология и аппаратура в биотехнологических производствах более просты и дешевы.

 







Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.