Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Радиоавтография, определение, история.





Метод радиоавтографии основан на введении в исследуемый объект соединения, "меченого" радиоактивным атомом и выявлении места его включения путем фотографической регистрации излучения. Основой получения изображения является воздействие ионизирующих частиц, образующихся при распаде радиоактивного атома, на ядерную фотоэмульсию, содержащую кристаллы галоидного серебра.

Открытие метода радиоавтографии напрямую связано с открытием явления радиоактивности. В 1867 году было опубликовано первое наблюдение о влиянии солей урана на галогениды серебра (Niepce de St.Victor). В 1896 году Генри Беккерель наблюдал засвечивание фотопластинки солями урана без предварительной экспозиции на свету. Этот эксперимент считается моментом открытия явления радиоактивности. Радиоавтографию применительно к биологическому материалу впервые использовали Лакассань и Латтье (Lacassagne, Lattes 1924) в 20-х годах прошлого века; гистологический блок от различных органов животных после введения им изотопов прижимали плоской стороной к рентгеновской пластинке и экспонировали. Заранее получали гистологический срез и подвергали стандартной процедуре окраски. Полученный автограф изучали отдельно от среза. Этот метод позволяет оценить интенсивность включения изотопа в биологический образец. В сороковых годах Леблон использовал радиоавтографию для демонстрации распределения изотопа иода в срезах щитовидной железы (Leblond C.P. 1943).

Первые попытки сочетать радиоавтографию с электронной микроскопией были сделаны в 50-е годы (Liquir-Milward, 1956). Электронно-микроскопическая радиоавтография представляет собой частный случай обычной радиоавтографии, при котором также подсчитываются зерна серебра и учитывается их распределение. Особеннось метода состоит в применении очень тонкого слоя эмульсии. В настоящее время достигнуто разрешение около 50 нм, что в 10-20 раз выше в сравнении со световой микроскопией.

В настоящее время метод радиоавтографии дополнен возможностью автоматической оценки количества зерен серебра с помощью видеоанализаторов. Часто для усиления сигнала метки (как правило это изотопы с высокими энергиями) применяются различные виды сцинтиляторов, нанесенные на пластины (усиливающий экран с фосфорным покрытием), или импрегнированные в эмульсию (PPO) – в таком случае излучение фотонов засвечивает обычную фотопластину или фотопленку.

Радиоавтография – один из основных количественных методов изучения метаболических процессов без нарушения целости клетки и клеточных структур, объединяющий принципы морфологического и биохимического анализов. Он позволяет локализовать с помощью радиоактивных изотопов биохимические процессы, протекающие в клетках, и изучать таким образом жизнедеятельность последних. Метод основан на введении в исследуемый объект радиоактивного метаболита («метки») и выявлении места его включения путем фотографической регистрации излучения. Наиболее крупные успехи в изучении клеточного цикла были достигнуты благодаря использованию в радиоавтографии специфического предшественника ДНК – тимидина, меченного тритием. Тритий (Н) — единственный радиоактивный изотоп водорода; период его полураспада равен приблизительно 12,5 г. Возникающие при распаде трития ß-частицы обладают малой энергией и как следствие – небольшой длиной пробега в фотоэмульсии (1-2 мк). Практически это означает, что если в исследуемом биологическом объекте два точечных источника излучения отстоят друг от друга на 1 мк, то на автографе они будут выявлены как два отдельных зерна фотоэмульсии. Тимидин – один из четырех нуклеозидов, участвующих в образовании полинуклеотидной структуры ДНК, который характерен только для молекулы ДНК, вследствие чего он является ее специфическим предшественником. Помимо избирательности в отношении ДНК, к числу достоинств Н-тимидина как меченого индикатора относятся его доступность для тканей, быстрота включения в структуры, синтезирующие ДНК, и кратковременное (не более нескольких минут) пребывание в свободном состоянии в организме животных. Существенным обстоятельством является также стабильность образующейся метки, которая, как будет ясно из дальнейшего, может быть «разбавлена» лишь в ходе последовательных клеточных делений.

Регуляция клеточной активности. Гибель клеток-как нормальный физиологический процесс.

Гибель (смерть) отдельных клеток или целых их групп постоянно встречается у многоклеточных организмов, также как гибель одноклеточных организмов. Причины гибели, процессы морфологического и биохимического характера развития клеточной смерти могут быть различными. Но все же их можно четко разделить на две категории: некроз (от греч. nekrosis - омертвление) и апоптоз (от греч. корней, означающих «отпадение» или «распадение»), который часто называют программируемой клеточной смертью (ПКС) или даже клеточным самоубийством.

Некроз

Этот вид клеточной смерти обычно связывается с нарушением внутриклеточного гомеостаза в результате нарушения проницаемости клеточных мембран, приводящим к изменению концентрации ионов в клетке, с необратимыми изменениями митохондрий, что сразу приводит к прекращению всех жизненных функций, включая синтез макромолекул. Некроз вызывают повреждения плазматической мембраны, подавление активности мембранных насосов под действием многих ядов, а также необратимые изменения энергетики при недостатке кислорода (при ишемии происходит закупорка кровеносного сосуда) или отравлении митохондриальных ферментов (действие цианидов).

Апоптоз

В процессе развития организмов и их функционировании во взрослом состоянии часть клеток постоянно гибнет, но без их физического или химического повреждения, происходит как бы их «беспричинная» смерть. Гибель клеток наблюдается практически на всех стадиях онтогенеза. Многочисленны примеры отмирания клеток без повреждения при эмбриогенезе. Так, отмирают клетки вольфовых и мюллерова каналов при развитии мочеполовой системы у позвоночных, погибает часть нейробластов и гонадоцитов, клетки при метаморфозах насекомых и амфибий (резорбция хвоста у головастика и жабер у тритона) и т.д.

 

Каспазы — цистеиновые протеазы, которые расщепляют белки по аспарагиновой кислоте.

Элиминация — удаление отдельных клеток путем апоптоза, наблюдается и у растений. Здесь апоптоз включает в себя, так же как у животных клеток, фазу индукции, эффекторную фазу и фазу деградации. Морфология гибели клеток растений сходна с изменениями клеток животных: конденсация хроматина и фрагментация ядра, олигонуклеотидная деградация ДНК, сжатие протопласта, его дробление на везикулы, разрыв плазмодесм и т.д.

Биологическая роль апоптоза, или программированной смерти клеток, очень велика: это удаление отработавших свое или ненужных на данном этапе развития клеток, а также удаление измененных или патологических клеток, особенно мутантных или зараженных вирусами.







ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.