Достаточные условия существования локальных экстремумов
Пусть функция непрерывна в и существуют конечные или бесконечные односторонние производные . Тогда при условии

является точкой строгого локального максимума. А если

то является точкой строгого локального минимума.
Заметим, что при этом функция не дифференцируема в точке 
Пусть функция непрерывна и дважды дифференцируема в точке . Тогда при условии
и 
является точкой локального максимума. А если
и 
то является точкой локального минимума.
Пусть функция дифференцируема раз в точке и , а .
14. Дифференцируемая функция называется выпуклой вниз на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х. Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х. Выпуклую вверх функцию часто называют выпуклой, а выпуклую вниз – вогнутой.
Точка называется точкой перегиба графика функции y = f(x), если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу) и существует такая окрестность точки , в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости. Другими словами, точка М называется точкой перегиба графика функции, если в этой точке существует касательная и график функции меняет направление выпуклости, проходя через нее. Если необходимо, обратитесь к разделу касательная к графику функции в точке, чтобы вспомнить условия существования невертикальной и вертикальной касательной. На рисунке ниже представлены несколько примеров точек перегиба (отмечены красными точками). Заметим, что некоторые функции могут не иметь точек перегиба, а другие могут иметь одну, несколько или бесконечно много точек перегиба.

15. Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные.
Определение 7.1 Вертикальной асимптотой графика функции называется вертикальная прямая , если или при каком-либо из условий: , , . Заметим, что мы при этом не требуем, чтобы точка принадлежала области определения функции , однако она должна быть определена по крайней мере в какой-либо из односторонних окрестностей этой точки: или , где .
Определение 7.2 Наклонной асимптотой графика функции при называется прямая , если выполнены два условия: 1) некоторый луч целиком содержится в ; 2) расстояние по вертикали между графиком и прямой стремится к 0 при :
| (7.1)
|
Наклонной асимптотой графика функции при называется прямая , если 1) некоторый луч целиком содержится в ; 2) расстояние по вертикали между графиком и прямой стремится к 0 при :


Рис.7.6.Графики функций, имеющие наклонные асимптоты при и при 
В случае, если наклонная асимптота расположена горизонтально, то есть при , она называется горизонтальной асимптотой. Таким образом, горизонтальная асимптота -- частный случай наклонной асимптоты; прямая является горизонтальной асимптотой графика при или , если

Или соответственно.
Определение первообразной.
Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство для любого х из заданного промежутка.Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо
равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.
Определение неопределенного интеграла. Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .
На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).
1. Производная результата интегрирования равна подынтегральной функции.
2. Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы.
3. , где k – произвольная константа. Коэффициент можно выносить за знак неопределенного интеграла.
4. Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|