|
Экспериментальная проверка работы параметрического стабилизатора⇐ ПредыдущаяСтр 11 из 11
Дифференциальное сопротивление стабилитрона находится из:
Коэффициент стабилизации теоретический по rдиф
Коэффициент стабилизации экспериментальный по табл.17.3
Совпадение теоретического и экспериментального значений коэффициента стабилизации достаточно хорошее. Стандартная величина коэффициента стабилизации параметрического стабилизатора лежит в пределах Кст = 10...30. Для получения коэффициента стабилизации напряжения с уровнями до 1000 и более применяют компенсационные стабилизаторы. 6. Находим нестабильность выходного напряжения:
Компенсационные стабилизаторы напряжения. Компенсационные стабилизаторы являются устройствами автоматического регулирования выходной величины. Стабилизатор напряжения поддерживает напряжение на нагрузке в заданных пределах при изменении входного напряжения и выходного тока. По сравнению с параметрическими стабилизаторами компенсационные отличаются большими выходными токами, меньшими выходными сопротивлениями, большими коэффициентами стабилизации. В состав компенсационного стабилизатора напряжения обычно входят следующие устройства: регулирующий компонент РК, устройство измерения УИ, усилитель постоянного тока УПТ. Регулирующий компонент включается последовательно (рис.17.10, а) или параллельно (рис.17.10,б) нагрузке. Чаще всего применяют стабилизаторы с последовательным РК, благода- ря высокому коэффициенту стабилизации и более высокому КПД. Стабилизаторы с параллельным РК используются в схемах с перегрузками по току и короткими замыканиями в нагрузке. Рис.17.10. Структурные схемы компенсационных стабилизаторов с последовательным (а) и параллель- ным (б) включением РК В зависимости от тока нагрузки в качестве регулирующего компонента используется один или несколько транзисторов. На рис.17. 11 приведены схемы регулирующих компонентов, отличающиеся числом используемых транзисторов и их соединением. Минимальное падение напряжения Uр.к.min в схеме, представленной на рис.17.11,а, определяется зависимостью Uр.к.min= UКЭ1нас + UЭБ2, где UКЭ1нас - напряжение коллектор-эмиттер транзистора VT1 в режиме насыщения; UЭБ2 - напряжение эмиттер-база транзистора VТ2. Для регулирующего элемента, приведенного на рис.17.11,б, справедливо равенство Uр.к.min =UКЭ1нас+UЭБ2+UЭБ3, где UЭБ3 - напряжение эмиттер-база транзистора VT3.
Рис.17.11. Регулирующие компоненты на транзисторах: составные на двух транзисторах (а, д) и составные на трех транзисторах (б, в, г, е)
В схемах стабилизаторов, представленных на рис.17.11, позиции в, г, е, используется дополнительный источник напряжения Uдоп, благодаря чему снижается минимальное падение напряжения. Для схемы на рис.17.11,в, имеем Uр.к.min = UКЭ2нас+UЭБ3. Для схемы, приведенной на рис.17.11,г, Uр.к.min определяется зависимостью Uр.к.min = UКЭ3нас. В схеме регулирующего компонента с дополнительной симметрией и стабилизатором тока СТ Uр.к.min = UЭБ2 + UКЭ1нас. В данном случае уменьшение Uр.к.min достигается благодаря тому, что при дополнительной симметрии напряжение насыщения UКЭ1нас меньше напряжения база-эмиттер UЭБ1. Включение в схему стабилизатора дополнительного источника напряжения и стабилизатора тока снижает падение напряжения, минимальное значение которого Uр.к.min = UЭБ2 + UКЭ1min - Uдоп, при этом должно соблюдаться условие Uдоп ≥ UЭБ2 + UКЭ1min - UЭБ2. При выполнении указанного условия напряжение Uр.к.min можно уменьшить до значения, близкого к UКЭ1нас. Усилитель постоянного тока может быть выполнен вместе с устройством измерения. На рис.17.12,а приведена простая схема УПТ, содержащая один транзистор VТ1, делитель выходного напряжения R3,R4,R5, источник опорного напряжения (стабилитрон VD1) и дополнительный источник напряжения Uдоп для обеспечения необходимого режима работы транзистора VТ1. Напряжение к коллектору транзистора может подаваться не от дополнительного источника, а с выхода Рис.17.12. Схемы УПТ с одним транзистором и одним дополнительным источником (а) и одним транзистором и двумя дополнительными источниками (б)
стабилизатора напряжения. Выходное напряжение Uвых в рассматриваемой схеме выше опорного Uоп. Если необходимо получить выходное напряжение ниже опорного, то можно применить схему с двумя дополнительными источниками Uдоп1 и Uдоп2 (рис.17.12,б). В стабилизаторах напряжения в качестве УПТ можно использовать операционный усилитель. Это позволяет повысить коэффициент стабилизации по сравнению с однокаскадными УПТ. В качестве примера на рис.17.13 приведена схема компенсационного стабилизатора напряжения с операционным усилителем (ОУ) типа К153УТ1. Особенностью данной схемы является наличие входного делителя напряжения R1, R2, напряжение с которого через диод подается на неинвертирующий вход операционного усилителя. Такое схемное решение применено для обеспечения надежного включения стабилизатора в режим стабилизации при подаче входного напряжения. В некоторых случаях в процессе включения имеет место сбой в связи с тем, что при достаточно большом напряжении смещения ОУ его выходной каскад входит в режим насыщения и его выходное напряжение не превышает десятых долей вольта. Это напряжение ниже уровня, необходимого для открывания транзистора регулирующего компонента. Рис.17.13. Схема компенсационного стабилизатора напряжения с ОУ типа К153УТ1 (1-8 выводы микросхемы) Сопротивление входного делителя напряжения выбирают из условий:
Диод VD1 выбирают с малым значением обратного тока. Операционные усилители применяются в основном в ИЭП с выходным напряжением свыше 30В.
Контрольные вопросы 1. Виды выпрямителей и их характеристики, классификация выпрямителей? Схемы одно-, двух-, трёхфазных выпрямителей – временные диаграммы, сравнительные характеристики, мостовые схемы? 2. Как определить амплитудное значение напряжения переменного тока по показаниям прибора, измеряющего действующее его значение? 3. В чём преимущества трёхфазной мостовой схемы выпрямления переменного тока (схемы Ларионова) перед всеми остальными? 4. Стабилизаторы напряжения и тока – основные соотношения? 5. Параметрические стабилизаторы напряжения – схемное построение, основные соотношения, температурная стабилизация, практическая работа? 6. Как обеспечить экспериментальное определение дифференциального сопротивления стабилитрона? 7. Проведите инженерный расчёт параметрического стабилизатора на выходное напряжение Uвых =12 вольт и ток нагрузки Iн =30 мА? 8. Как при проектировании параметрического стабилизатора обеспечить условие превышения тока стабилитрона над током нагрузки, если стабилитроны имеют какие-то фиксированные значения номинальных токов? 9. Поясните смысл термина «коэффициент стабилизации» параметрического стабилизатора? 10. Как определить выходное сопротивление стабилизатора? 11. Компенсационные стабилизаторы напряжения – структурные схемы, основные соотношения, преимущества, практическая реализация?
ВЫВОДЫ
В настоящей книге авторы постарались в доступной форме изложить совокупность тех вопросов, которые должны усвоить студенты направления 230100 «Информатика и вычислительная техника» для успешного понимания в дальнейшем дисциплин аппаратного цикла, а также должны знать специалисты в области электроники, автоматики, вычислительной техники. Элементная и компонентная базы электроники быстро изменяются. Для их освоения и грамотного использования необходима достаточно глубокая теоретическая подготовка. Без неё тяжело или невозможно выполнять проектирование электронных функциональных узлов даже при использовании таких эффективных пакетов САПР, как Multisim, Micro-Cap V, P-Spice и др. Основные подходы и идеи работы электронных схем мало зависят от типа компонентной базы и определяются степенью понимания человеком основных законов электротехники и электроники. Успех определяется совокупностью базовых знаний учащегося, в том числе - в большей степени - глубиной знаний школьной программы и наличием навыков практического их использования. В рамках своего понимания важности и значимости отдельных вопросов и целостности и системности знаний авторы пытались сохранить баланс между простотой изложения, строгостью и обоснованностью доказательств наиболее необходимых положений. Насколько это удалось – судить Вам, уважаемый читатель. Мы надеемся, что учебное пособие будет полезно студентам, аспирантам и инженерам и как справочное пособие при изучении, разработке и эксплуатации технических средств электроники и вычислительной техники. Успехи развития технической базы этих областей знания, обеспечившие появление телевидения, компьютера, сотовой связи, – придали серьёзное ускорение темпам развития цивилизации человеческого общества в ХХ веке. Прогресс в этой области будет оказывать влияние на жизнь общества и в ХХ1 веке.
ЗАКЛЮЧЕНИЕ Учебное пособие посвящено изучению элементной базы электронных устройств, пониманию работы основных функциональных блоков аналого-цифровой техники, способов обработки информации. Вопросы, рассмотренные в книге, в различном объёме и с разной степенью подробности изучаются везде, где речь идёт об автоматизации, электронике, об устройствах вычислительной техники, связи и т.д. Катаклизмы в этой области знаний, начавшиеся в стране в 1991 г. и идущие до сегодняшнего дня, привели к тому, что качество знаний школьников существенно снизилось, уровень общей технической культуры инженеров и техников стал неприемлемо низким. Перестали функционировать многие научно-исследовательские институты и большинство научных коллективов при кафедрах учебных заведений. Специалисты в области электроники и вычислительной техники в значительной степени поменяли место работы и ушли в бизнес или в сферы обслуживания. Вместе с ними из обращения исчезли многочисленные книги, изданные в период расцвета этой области знаний. Социальные изменения в обществе привели к возрождению вечернего и заочного обучения, привели к появлению дистанционного образования. В учебном процессе на дневных отделениях всё больший упор начали делать на самостоятельную работу студентов. Поэтому сейчас, как никогда ранее, стал актуальным вопрос изложения в ограниченном количестве источников совокупности тех сведений, которые важны для профессиональной подготовки специалиста. Данное учебное пособие и направлено на заполнение создавшегося вакуума в области литературы по электронной и вычислительной техники. Рассматривается элементная база устройств полупроводниковой электроники, их классификация, вольтамперные и частотные характеристики. Определены основные схемы включения и особенности применения конкретных приборов в различных режимах работы. Излагаются принципы построения типовых аналого-цифровых устройств. Книга позволит учащимся ликвидировать пробелы в знаниях, исполняя роль справочного пособия. В заключение мы хотели бы принести извинения читателям за те неточности и опечатки, без которых издание книги затруднено. Надеемся, что их немного. Желаем всем здоровья и счастья
Библиографический список
1 Прянишников В.А. Электроника: Полный курс лекций. - 7-е изд. - Спб.: КОРОНА-Век, 2010, 416 с., ил. 2 Опадчий Ю.Ф. и др. Аналоговая и цифровая электроника (Полный курс): Учебник для вузов / Ю.Ф. Опадчий, О.П. Глудкин, А.И. Гуров; под ред.О.П. Глудкина.-М.:Горячая линия-Телеком, 2002,-768с., ил. 3 Гусев В.Г. Электроника и микропроцессорная техника: Учеб. для вузов / В.Г. Гусев, Ю.М. Гусев. - 3-е изд., перераб. и доп. - М.: Высш. шк. 2004.- 709 с.: ил. 4 Электротехника и электроника: учебное пособие для вузов / В.В. Кононенко, В.И. Мишкович, В.В. Муханов, В.Ф. Планидин, П.М. Чеголин; под ред. В.В. Кононенко.- Изд. 5-е. - Ростов н/Д: Феникс, 2008.-778 с. 5 Лачин В.И. Электроника: учебное пособие. /В.И. Лачин, Н.С. Савёлов.- Изд.7-е.-Ростов н/Д: Феникс, 2009.-703 с. 6 Коломбет Е.А., Юркович К., Зодл Я. Применение аналоговых микросхем. М.: Радио и связь, 1990. 7 Степаненко И.П. Основы микроэлектроники. М.: Советское радио., 1980. 8 Волович Г.И. Схемотехника аналоговых и аналого-цифровых электронных устройств. 2-е изд., исправ. - М.: Издательский дом «Додэка-ХХ1», 2007.-528 с., ил. 9 Хоровиц П., Хилл У. Искусство схемотехники: Пер. с англ.- Изд.6-е.-М.: Мир, 2003,-704 с., ил. 10 Граф Р.Ф., Шиитс В. 400 новых радиоэлектронных схем. Пер. с англ.- М.: ДМК Пресс, 2007.- 416 с., ил. (В помощь радиолюбителю). 11 Конструкторско-технологическое проектирование электронной аппаратуры: Учебник для вузов / К.И. Билибин, А.И. Власов, Л.В. Журавлёв и др. Под общ. ред. В.А. Шахнова. – М.: Издательство МГТУ им. Н.Э. Баумана, 2002. – 528 с. 12 Проектирование источников электропитания электронной аппаратуры: учебное пособие / О.К. Березин, В.Г. Костиков, Е.М. Парфёнов и др.; под ред. В.А. Шахнова.- 4 изд., перераб. и доп.- М.:КНОРУС, 2010.-536 с. 13 Загидуллин Р.Ш. Multisim, LabVIEW и Signal Express. Практика автоматического проектирования электронных устройств. - М.: Горячая линия-Телеком, 2009.- 336 с.: ил. 14 Золотов В.П., Крылов С.М., Федосов С.А. Электроника: лабораторный практикум.- Самара: Самар. гос. техн. ун-т, 2009, - 76 с.: ил.
![]() ![]() ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... ![]() ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... ![]() Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... ![]() Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|