Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Гидравлические элементы потока, расход, средняя скорость. Уравнение неразрывности (сплошности) потока.





В качестве основных элементов, характеризующих поток жидкости, различают: площадь живого сечения, смоченный периметр, гидравлический радиус, эквивалентный диаметр, средняя скорость потока, расход жидкости.

Живым сечением называется сечение потока, проведенное перпендикулярно линиям тока. (Линией тока называется такая линия, касательные к которой в любой точке, совпадают с направлением векторов скорости частиц в данный момент времени.)

Смоченный периметр – часть периметра живого сечения потока, в которой жидкость соприкасается с твердыми стенками канала или трубы. (χ, м).

Гидравлический радиус – характеристика живого сечения, представляющая собой отношение площади живого сечения к смоченному периметру

R=w/ χ

Средняя скорость – фиктивная скорость (v, м/с), с которой должны двигаться все частицы жидкости в данном живом сечении, чтобы расход, проходящий через него, был равен расходу, вычисленному по действительным скоростям всех частиц в этом же сечении. v=Q/w

Расход– количество жидкости, протекающей через живое сечение потока в единицу времени.

расход жидкости по тока равен произведению площади его живого сечения на среднюю скорость(Q=v * w). При движении жидкости различают, соответственно расходы: объемный, весовой и массовый.

u1 w1=u2 w2=……=un wn=const

Это уравнение называется уравнением неразрывности (сплошности) для элементарной

струйки. Оно показывает, что при установившемся движении элементарный объемный расход несжимаемой жидкости есть величина постоянная вдоль всей струйки.

Учитывая, что поток жидкости представляет собой совокупность большого числа элементарных струек, сплошь заполняющих площадь его живого cечения, общий расход жидкости для всего потока, очевидно, можно определить как сумму



элементарных расходов отдельных струек, из которых состоит

поток, т.е.

Q = Ʃu*w

u – скорость элементарных струек

 

Уравнение Д. Бернулли для элементарной струйки невязкой жидкости.

z+р/γ+u2/2g=const

Это и есть уравнение Д. Бернулли для элементарной струйки идеальной жидкости. Оно показывает, что для элементарной струйки идеальной жидкости полная удельная энергия, т .е . сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии,есть величина постоянная во всех сечениях.

Члены уравнения Бернулли измеряются в единицах длины и носят следующие название: z — нивелирная высота, или геометрический напор; р/γ — пьезометрическая высота; u2/2g —

скоростная высота, или скоростной напор.

Уравнение Д. Бернулли для элементарной струйки реальной жидкости. Геометрическое и энергетическое толкование уравнения Д. Бернулли.

Благодаря вязкости в реальной жидкости происходят потери механической энергии потока на трение внутри жидкости и о стенки канала. При этом происходит рассеивание (диссипация) энергии. Энергия, потерянная на трение, превращается в теплоту и идет на пополнение запаса внутренней энергии жидкости, а часть ее отводится в виде тепла через стенки канала.

Внутренняя энергия жидкости не может быть непосредственно использована для приведения жидкости в движение и поэтому в гидравлике рассматривается как потеря механической энергии (потеря напора).

Для реальной жидкости равенство нарушается, и вместо него имеем , где – потеря напора на участке 1–2. Тогда для элементарной струйки реальной жидкости уравнение Бернулли примет вид

Таким образом, полный напор вдоль струйки реальной жидкости уменьшается. Для характеристики относительного изменения полного напора на единицу длины вводится понятие о гидравлическом уклоне

Например, на участке трубопровода 1–2 (см. рис. 4.26)

где l1-2 – длина участка 1–2.

Таким образом, гидравлическим уклоном называется отношение потери напора к длине, на которой она происходит.

Кроме того, вводится еще понятие о пьезометрическом уклоне

Пьезометрический уклон может быть положительным, равным нулю и отрицательным.

 

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2019 zdamsam.ru Размещенные материалы защищены законодательством РФ.