|
Уравнение Д. Бернулли для потока сжимаемой жидкости. Дозвуковая и сверхзвуковая скорости. Число Маха.
Для идеального газа уравнения состояния выражается уравнением Менделеева-Клапейрона
где p (МПа), r (кг), T (К) – давление, плотность и абсолютная температура газа; R = 29,27 (м/К) – газовая постоянная. В общем случае скорость звука в газе a (м/с) выражается зависимостью
При адиабатическом процессе уравнение состояния для идеального газа принимает вид
а скорость звука
Отношение скорости потока сжимаемой жидкости w к скорости звука в ней a называется числом Маха M При M < 1 - поток называется дозвуковым, при M > 1 - сверхзвуковым, при M = 1 - критическим. Если M<<1 сжимаемость газа при изменении его скорости незначительна, его с достаточной точностью можно считать несжимаемым. В дозвуковом потоке с увеличением площади его живого сечения скорость течения w уменьшается, в сверхзвуковом, наоборот, увеличивается. Если число М < 1 (w < a), то в дозвуковом потоке, как и в потоке несжимаемой жидкости, скорость w обратно пропорциональна площади живого сечения w. Если же М > 1, то есть когда w > a, то в сверхзвуковом потоке сжимаемой жидкости скорость w прямо пропорциональна площади живого сечения w. То есть следует вывод, прямо противоположный выводу, широко известному из гидродинамики несжимаемой жидкости. Подобное явление в сжимаемой жидкости возможно потому, что увеличение скорости в нем вызывает не только уменьшение давления (как и в несжимаемой жидкости), но и уменьшение плотности, то есть - её расширение. Следовательно, расширение струи газа в сверхзвуковом потоке ведет к расширению самого газа в термодинамическом смысле, то есть к уменьшению давления, плотности, температуры и к увеличению скорости. Рассмотрим, в каких условиях возможен переход дозвукового потока в сверхзвуковой и, наоборот, сверхзвукового в дозвуковой. Пусть имеется поток, в котором w = a, то есть М = 1,0. Установим, в каких условиях может наступать равенство w = a (М = 1,0) и переход потока из одного вида в другой.
Рассмотрим две возможные конфигурации потока (струи): расширяющуюся и сужающуюся к середине (рис. 9.1). В первом случае при дозвуковой скорости потока в начале струи скорость в ней уменьшается в направлении течения и в сечении wmax имеет минимальное значение. При сверхзвуковой скорости потока скорость увеличивается в направлении течения и в сечении wmax имеет наибольшее значение. Следовательно, в обоих случаях скорость течения в сечении wmax может быть равной скорости звука. Во втором случае при дозвуковой скорости потока в начале струи скорость в струе по мере уменьшения площади сечения увеличивается и в сечении wmin может стать звуковой, а затем и сверхзвуковой. При сверхзвуковой скорости потока в начале струи скорость струи по мере уменьшения сечения также уменьшается и в сечении wmin может стать звуковой, а затем будет уменьшаться в расширяющейся части струи уже как дозвуковая скорость. Следовательно, скорость струи может перейти значение скорости звука только в наиболее узком сечении струи. Это сечение называют критическим, а скорость звука, равную скорости течения потока, называют, как указывалось выше, критической скоростью. Рассмотренную выше особенность струй (потоков) сжимаемых жидкостей (газов) учитывают при проектировании специальных насадок (сопел), например, в ракетостроении, которые должны обеспечить истечение сжимаемых жидкостей со сверхзвуковой скоростью из ёмкостей, где они находятся под давлением. В честь шведского инженера Лаваля, предложившего для получения сверхзвуковых потоков плавно сужающуюся и затем плавно расширяющуюся насадку (сопло), эту насадку называют сопло Лаваля (рис. 9.1). Сжимаемость жидкости обуславливает важное явление - образование в ней волн уплотнения и разрежения. Как было установлено ранее, в несжимаемой жидкости возмущения, вызванные повышением или понижением давления, распространяются мгновенно. И, следовательно, в движение вовлекаются все частицы жидкости той или иной области (пространства), где возникает возмущение. Повышение давления в какой-либо точке (области) сжимаемой жидкости вызывает в первый момент уплотнение частиц, близлежащих к источнику возмущения; в следующий момент уплотненные частицы расширяются, вызывая уплотнения других, соседних, частиц и т.д. Таким образом, повышение давления в некоторой точке (области) сжимаемой жидкости вызывает образование в ней волны уплотнения, распространяющейся с некоторой скоростью. Переднюю границу волны уплотнения называют фронтом волны. Характер уплотнения, в зависимости от интенсивности возмущения может быть плавным или скачкообразным. Однако как бы велико ни было возмущение, вызывавшее волну уплотнения, уплотнение сжимаемой среды происходит не мгновенно, а возрастает в течении некоторого времени. Поэтому в первый момент волна уплотнения характеризуется постепенным нарастанием плотности от фронта к тылу. Причем вследствие разной степени уплотнения частиц скорости распространения отдельных точен волны будут разными. Это приводит к тому,что более сильные уплотнения, распространяющиеся с более высокими скоростями, будут догонять передние точки волны. Поэтому через некоторое время после возникновения уплотнения наибольшее уплотнение оказывается у фронта волны. Происходит скачкообразное изменение плотности (а также давления, скорости и температуры) на фронте волны и волна уплотнения превращается в ударную волну, на фронте которой имеет место значительное выделение тепла, и таким образом поисходит рост энтропии. Это согласуется со вторым законом термодинамики, согласно которому энтропия замкнутой системы может только возрастать. Аналогично волне уплотнения возникает в сжимаемой жидкости и волна разрежения. Так, понижение давления в некоторой точке жидкости вызывает расширение частиц, близлежащих к источнику возмещения,и уменьшение их давления на следующие частицы, которые вследствие этого тоже расширяются и т.д. Однако, в отличие от волны уплотнения во фронте волны разрежения не бывает скочкообразного изменения плотности - скачков разрежения. Образование скачков разрежения вело бы к уменьшению энтропии, а это противоречило бы второму закону термодинамики. Более подробное изучение ударных волн в воздухе и в воде производится на соответствующих курсах применительно к решению конкретных инженерных задач. Параметры на фронте воздушной ударной волны с избыточным давлением Dp (МПа) вычисляются по формулам: - скорость распространения фронта ударной волны
- скорость движения газа
- плотность воздуха
- температура воздуха
- скорость звука в воздухе
При движении газа по трубе (по шлангу) диаметром d (м), длиной L (м), когда абсолютное давление в начале трубопровода равно p1 (МПа), а в конце – p2 (МПа), массовый расход воздуха определяется по формуле:
Плотность r1 находится из уравнения состояния при заданной температуре наружного воздуха T K:
Коэфициент трения l определяется по эмпирическим формулам: - для металлических труб
- для резиновых шлангов Требуемый диаметр трубы (шланга) для обеспечения требуемого массового расхода M и давления в конце трубопровода p2 вычисляется по формулам: - металлическая труба
- резиновый шланг
Пример 1. Определить массовый расход M и объемный расход Q¢ (при атмосферном давлении p¢ = 0,1014 МПа) воздуха по металлической трубе длиной L = 40 м и диаметром d = 25 мм при следующих исходных данных: - абсолютное давление в начале трубы p1 = 0,8 МПа; - абсолютное давление в конце трубы p2 = 0,4 МПа; - температура воздуха T = 290 К. Решение Массовый расход воздуха
Коэффициент трения для металлических труб Плотность воздуха при давлении p1 = 0,8 МПа и температуре T = 290 К
Объемный расход воздуха при атмосферном давлении где плотность воздуха при атмосферном давлении Число́ Ма́ха () — в механике сплошных сред — один из критериев подобия в механике жидкости и газа. Представляет собой отношение скорости течения в данной точке газового потока к местной скорости распространения звука в движущейся среде — назван по имени австрийского учёного Эрнста Маха (нем. E. Mach). ![]() ![]() ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... ![]() Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... ![]() ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... ![]() Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|