Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Стандартный водородный электрод. Его применение. Измерение электродных потенциалов металлических электродов.





Стандартный водородный электрод - это специально сконструированной электрод, в котором происходит окислительно-восстановительная реакция: 2Н+ + 2е ↔ Н2. При этом концентрация ионов водорода является одномолярной, давление водорода равняется 1 атм. и поддерживается температура 25°С.

Стандартный водородный электрод представляет собой сосуд, заполненный кислотой (как правило), в котором находится платиновая пластинка, служащая для адсорбции молекулярного водорода и его диссоциации на атомы, а также являющаяся проводником первого рода, поставляющим в систему свободные электроны. Концентрация кислоты соответствует , парциальное давление водорода в системе поддерживается 10^5 Па.

Измерение электродных потенциалов металлических электродов.

Точно измерить электродный потенциал достаточно трудно, так как необходимо, чтобы в процессе измерения не нарушалось равновесие на электродах. По этой причине невозможно получить точное значение Е с помощью обычного вольтметра: если мы замкнем цепь, используя вместо проводника вольтметр, то в ней начнет протекать довольно большой ток, который нарушит равновесие на электродах. Для измерения можно использовать специальные вольтметры с высоким входным сопротивлением (более 1012 Ом). При включении в цепь такого прибора протекающий ток слишком мал для оказания существенного влияния на электродное равновесие.
Стандартный электродный потенциал-это потенциал электрода при стандартных условиях, его обозначают символом Е°. Эти потенциалы определены для многих окислительно-восстановительных систем и обычно приводятся в химических справочниках. Если электроды (на пример, металлические электроды 1-го рода) расположить в порядке возрастания потенциала, то мы получим таблицу, называемую рядом стандартных электродных потенциалов. Этот ряд часто называют рядом напряжений, однако этот термин устарел и его лучше не использовать.


При помощи ряда стандартных электродных потенциалов можно характеризовать некоторые химические свойства металлов. Например, его применяют для выяснения, в какой последовательности восстанавливаются ионы металлов при электролизе, а также при описании других свойств металлов.
Чем меньше алгебраическая величина потенциала, тем выше вос­становительная способностьэтого металла и тем ниже окислительная способность его ионов. Как следует из этого ряда, металлический литий - самый сильный восстановитель, а золото-самый слабый. И наоборот, ион золота Аu3+-самый сильный окислитель, а ион лития Li+ -самый слабый.
Каждый металл в ряду стандартных электродных потенциалов обладает способностью вытеснять все следующие за ним металлы из растворов их солей. Однако это не означает, что вытеснение обязатель­но происходит во всех случаях. Например, алюминий вытесняет медь из раствора хлорида меди (II) СuСl2, но практически не вытесняет ее из раствора сульфата меди (II) CuS04. Это объясняется тем, что хлорид-ион Сl-быстро разрушает защитную поверхностную пленку на алюминии, а сульфат-ион SO4 2-практически не разрушает ее.
Все металлы, имеющие отрицательные значения стандартных электродных потенциалов, т.е. стоящие в ряду до водорода, вытесняют водород из разбавленных кислот, анионы которых не проявляют окислительных свойств (например, из НСl или разбавленной H2S04) и растворяются в них. Однако есть и исключения. Например, свинец практически не растворяется в серной кислоте. Это обусловлено образованием на поверхности металла защитной пленки труднорастворимого сульфата свинца PbS04, который затрудняет контакт металла с раствором кислоты. Поэтому можно сделать вывод, что пользоваться рядом стандартных электродных потенциалов следует с учетом всех особенностей рассматриваемых процессов.

Электрохимия. Механизм возникновения скачка потенциала на границе раздела фаз: металл/растворов соли металла. Ряд напряжений. Использование этого ряда для определения направления реакции окисления-восстановления.

Электрохимия — раздел химической науки, в котором рассматриваются системы и межфазные границы при протекании через них электрического тока, исследуются процессы в проводниках, на электродах (из металлов или полупроводников, включая графит) и в ионных проводниках (электролитах). Электрохимия исследует процессы окисления и восстановления, протекающие на пространственно-разделённых электродах, перенос ионов и электронов. Прямой перенос заряда с молекулы на молекулу в электрохимии не рассматривается.

Возникновение скачка потенциала на границе раздела фаз вызывается различными причинами, зависящими от природы граничащих фаз. Одной из наиболее общих причин будет обмен заряженными частицами. В момент появления контакта между фазами он протекает преимущественно в каком-либо одном направлении, в результате чего создается избыток частиц данного знака заряда по одну сторону границы раздела и их недостаток по другую. Такой нескомпенсированный обмен приводит к созданию двойного электрического слоя, а следовательно, к появлению разности потенциалов. Последняя в свою очередь будет влиять на кинетику обмена, выравнивая скорости перехода заряженных частиц в обоих направлениях. По мере увеличения разности потенциалов наступит момент, когда уже не будет больше преимущественного перехода частиц из одной фазы в другую, и скорости их перехода в обоих направлениях станут одинаковыми. Такое значение скачка потенциала отвечает равновесию между фазами, при котором электрохимические потенциалы заряженных частиц в обеих фазах равны. Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусловливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл - вакуум или металл / - металл 2 такими частицами являются обычно электроны. При создании границы металл - раствор соли металла в обмене участвуют катионы металла. Скачок потенциала на границах стекло - раствор, а также ионообменная смола - раствор появляется в результате обмена, в котором участвуют два сорта одноименно заряженных ионов. На границах стекло-раствор и катионитная смола - раствор такими ионами являются ионы щелочного металла и водорода; на границе анионитная смола - раствор - ион гидроксила и какой-либо другой анион. При контакте двух не смешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую подобно тому, как образуется диффузионный потенциал. Следовательно, оба потенциала - и фазовый жидкостный, и диффузионный - не являются равновесными.

Ряд напряжений - последовательность расположения металлов и их ионов в порядке возрастания стандартных электродных потенциалов в растворах электролитов. Электродом сравнения обычно служит стандартный водородный электрод. Поэтому в Р. н. включают и водород, электродный потенциал которого принимается равным нулю. Наибольшие отрицательные потенциалы характерны для щелочных металлов (около — 3 в), за ними следуют щёлочноземельные металлы и т. д.; наиболее положительные потенциалы имеют благородные металлы (около + 1,5 в; численные значения). В Р. н. часто включают неметаллы, ионы и некоторые химические соединения. Наиболее распространённые металлы расположены в Р. н. в следующей последовательности: Li, К, Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Sn, Pb, H2, Cu, Hg, Ag, Au.







ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.