|
Проверка нормальности распределения результатов наблюденийВ предыдущих разделах было показано, что результаты наблюдений можно оценить наиболее полно, если их распределение является нормальным. Поэтому исключительно важную роль при обработке результатов наблюдений играет проверка нормальности распределения. Эта задача представляет собой частный случай более общей проблемы, заключающейся в подборе теоретической функции распределения, в некотором смысле наилучшим образом согласующейся с опытными данными. При большом числе результатов наблюдений (n >40) данная задача решается в следующем порядке. Весь диапазон полученных результатов наблюдений X max... X min разделяют на r интервалов шириной Отношения
Если теперь разделить частость на длину интервала, то получим величины
Отложим вдоль оси результатов наблюдений (рис.11) интервалы Площадь суммы всех прямоугольников равна единице: При увеличении числа наблюдений число интервалов можно увеличить. Сами интервалы уменьшаются, и гистограмма все больше приближается к плавной кривой, ограничивающей единичную площадь, - к графику плотности распределения результатов наблюдений. При построении гистограмм рекомендуется пользоваться следующими правилами: 1. Число интервалов выбирается в зависимости от числа наблюдений согласно рекомендациям табл.6.
2. Длины интервалов удобнее выбирать одинаковыми. Однако если распределение крайне неравномерно, то в области максимальной концентрации результатов наблюдений следует выбирать более узкие интервалы. 3. Масштабы по осям гистограммы должны быть такими, чтобы отношение ее высоты к основанию составляло примерно 5:8.
Пример. Было выполнено 100 измерений среднего диаметра резьбового калибра. Результаты наблюдений лежат в диапазоне 8.911 - 8.927 мм, т. е. зона распределения результатов составляет 0.016 мм. Весь диапазон удобно разделить на восемь равных интервалов через 0.002 мм. В табл.7 приведены частоты mi, частости
После построения гистограммы надо подобрать теоретическую плавную кривую распределения, которая, выражая все существеные черты статистического распределения, сглаживала бы все случайности, связанные с недостаточным объемом экспериментальных данных. Принципиальный вид теоретической кривой выбирают заранее, проанализировав метод измерения, или хотя бы по внешнему виду гистограммы. Тогда определение аналитического вида кривой распределения сводится к выбору таких значений его параметров, при которых достигается наибольшее соответствие между теоретическим и статистическим распределением. Одним из методов решения этой задачи является метод моментов. При его использовании параметрам теоретического распределения придают такие значения, при которых несколько важнейших моментов совпадают с их статистическими оценками. Так, если статистическое распределение, определяемое гистограммой, приведенной на рис.11, мы хотим описать кривой нормального распределения, то естественно потребовать, чтобы математическое ожидание и дисперсия последнего совпадали со средним арифметическим и оценкой дисперсий, вычисленным по опытным данным. В предыдущем примере Далее законно возникает вопрос, объясняются ли расхождения между гистограммой и подобранным теоретическим распределением только случайными обстоятельствами, связанными с ограниченным числом наблюдений, или они вызваны тем, что результаты наблюдений в действительности распределены иначе? Для ответа на этот вопрос используют методы проверки статистических гипотез. Идея их применения заключается в следующем. На основании гистограммы, полученной при обработке опытных данных, строится гипотеза, состоящая в том, что результаты наблюдений подчиняются распределению Для того чтобы принять или опровергнуть эту гипотезу, выбирается некоторая величина U, представляющая собой меру расхождения теоретического и статистического распределений. В качестве меры расхождения можно принять сумму квадратов разностей частостей и теоретических вероятностей попадания результатов наблюдений в каждый интервал, взятых с некоторыми коэффициентами:
Мера расхождения U является случайной величиной и, независимо от исходного распределения подчиняется Если проверяется гипотеза о нормальности распределения, то к числу этих связей относится равенство среднего арифметического математическому ожиданию, а точечной оценки дисперсии - дисперсии предполагаемого нормального распределения. Кроме того, всегда требуется, чтобы сумма частостей по всем интервалам была равна единице. Поэтому в данном случае s = 3. По табл.П.6 можно при заданной доверительной вероятности Если вычисленная по опытным данным мера расхождения окажется в указанном интервале, то гипотеза принимается. Это, конечно, не значит, что гипотеза верна. Можно лишь утверждать, что она правдоподобна, т.е. не противоречит опытным данным. Если же она выходит за границы доверительного интервала, то гипотеза отвергается как противоречащая опытным данным. Поскольку проверка гипотезы основывается на опытных данных, то при принятии решения всегда возможны ошибки. Отвергая в действительности верную гипотезу, мы совершаем ошибку первого рода. Вероятность ошибки первого рода называется уровнем значимости и составляет Описанная процедура проверки гипотезы о том, что данное статистическое распределение является распределением с плотностью 1. Данные наблюдений группируют по интервалам, как при построении гистограммы, и подсчитывают частоты 2. Вычисляют среднее арифметическое 3. Для каждого интервала находят вероятности попадания в них результатов наблюдений либо по общей формуле (29), либо приближенно как произведение плотности теоретического распределения в середине интервала на его длину:
4. Для каждого интервала вычисляют величины 5. Определяют число степеней свободы Критерий согласия При малом числе наблюдений Первый критерий основан на вычислении статистики
Гипотеза о нормальности распределения на основании первого критерия принимается, если при данном числе наблюдений и выбранном уровне значимости
На основании второго критерия гипотеза о нормальности распределения принимается, если не более
Величина Распределение результатов наблюдения считается отличным от нормального, если оно не соответствует хотя бы одному из этих двух критериев. Уровень значимости составного критерия
При малом числе наблюдений для оценки нормальности можно воспользоваться понятием статистической функции распределения результатов наблюдений. Для ее построения полученные в процессе эксперимента результаты группируют в так называемый вариационный ряд
Если число наблюдений безгранично увеличивать, то статистическая функция распределения сходится по вероятности к истинной функции Для проверки нормальности распределения результатов наблюдений по табл.3 приложения находят значения
Пример. Даны результаты девятнадцати измерений длины детали (см. табл.3). Проверить нормальность распределения результатов наблюдений. Вычисления по изложенной методике сведены в табл.8.
На рис.12 представлена зависимость ![]() ![]() ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... ![]() Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... ![]() ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... ![]() Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|