|
Радиоактивность, изотопы, радионуклиды.Стр 1 из 3Следующая ⇒ Радиоактивность, изотопы, радионуклиды. РАДИАКТИВНОСТЬ – это процесс самопроизвольного превращения неустойчивого нуклида в другой нуклид с испусканием ионизирующего излучения. Единицами измерения активности радиоактивных веществ являются беккерель (Бк) и кюри (Ки) = 3,7*10 в 10 Бк. Изотопы – атомы химического элемента, отличающиеся от атомов того же химического элемента своей массой. Радионуклиды – радиоактивные нуклиды. А - особо высокая – 0,1 – Pu-238, Pu-239 Б – высокая – 1 – Sr-90, j-131 В – средняя – до 10 – cs-137 Г – малая – до 10 – Fe-55 Атомы одного и того же элемента, ядра которых состоят из одинакового числа протонов, но различного числа нейтронов, называются изотопами. Такие атомы имеют одинаковые химические свойства, поскольку у них один и тот же атомный номер, но различаются разными массовыми числами. Ядра всех изотопов химических элементов образуют группу нуклидов. Для различия изотопов у символа элемента слева вверху ставится число, соответствующее массовому числу данного изотопа, и внизу слева указывается атомный номер элемента: А X Z Некоторые нуклиды стабильны, т.е. при отсутствии внешнего воздействия никогда не претерпевают никаких превращений (стабильные нуклиды). Большинство же нуклидов нестабильны; они постоянно превращаются в другие нуклиды и называют их радионуклидами. В конце прошлого века были сделаны два чрезвычайно важных открытия: в 1895 году немецким физиком В.К. Рентгеном был открыт новый, не известный до этого вид излучения, а в 1896 году французский физик А. Беккерель обнаружил, что уран самопроизвольно испускает невидимые лучи, вызывающие свечение некоторых веществ и потемнение фотопластинки. Это свойство было названо радиоактивностью, а излучение — радиоактивным. Радиоактивность — это самопроизвольное превращение (распад) атомных ядер, приводящее к изменению атомного номера или энергетического состояния ядра. Французские физики М. Складовская-Кюри и П. Кюри установили, что радиоактивностью обладает не только уран, но и некоторые другие элементы, в частности радий, торий, вновь открытый ими элемент полоний и др. Они экспериментально доказали, что при радиоактивном распаде испускаются альфа- или бета-частицы. В результате радиоактивных превращений возникают ядерные излучения, основными из которых являются альфа-частицы, бета-частицы, гамма-лучи, нейтроны, рентгеновские лучи. Альфа-распад наблюдается у радиоактивных изотопов тяжелых элементов с атомным номером Z > 82. В результате альфа-распада число протонов в ядре уменьшается на две единицы, на столько же единиц уменьшается число нейтронов. Следовательно, образуется новое ядро, атомный номер которого будет на две, а массовое число — на четыре единицы меньше. Энергия радиоактивных излучений измеряется специальными единицами. За единицу энергии принят электронвольт (эВ). Электронвольт — это энергия, которую приобретает электрон, проходя в электрическом поле разность потенциалов, равную одному вольту. При бета-распаде наблюдаются три типа превращений: в-распад, или электронный распад; р+-распад, или позитрон-ный распад; электронный захват. Электронный в-распад характерен для подавляющего числа известных в настоящее время естественных и искусственных радионуклидов (131 j, 32 р). Вылет из ядра электрона (р-распад) связан с превращением одного из нейтронов в протон. В результате число протонов в ядре увеличится на единицу, а суммарное число протонов и нейтронов не изменится. Следовательно, при электронном бета-распаде образуется новое ядро с атомным номером на единицу большим, чем у исходного, и с тем же массовым числом. Позитронный р+-распад наблюдается лишь у незначительной части искусственных радиоактивных изотопов. При вылете из ядра позитрона (р+-распад) происходит превращение одного из протонов ядра в нейтрон. В результате вновь образованное ядро будет иметь атомный номер на единицу меньший и то же массовое число. Такой тип р-распада, как электронной захват, редко встречается. При электронном захвате протон ядра захватывает электрон, находящийся на одной из ближайших орбит электронной оболочки атома, это приводит к тому, что протон превращается в нейтрон. Место, которое занимал захваченный электрон, освобождается. Оно немедленно заполняется электроном из других, более далеких от ядра, слоев оболочки. Избыток энергии, освобождающийся при таком переходе, испускается атомом в виде рентгеновского характеристического или другого излучения. Электронный захват наблюдается у 58Со (кобальт). 15 % его ядер дают р-распад, 85 % — электронный захват. Максимальная энергия р-частиц, испускаемых различными радионуклидами, составляет 0,1—3,5 МэВ.
Нормативные документы по радиационной безопасности и основные положения этих документов. 1 группа – документы, регламентирующие лучевые нагрузкм на организм человека. НРБ-76/87 2 группа – документы, регламентирующие организацию работы с радиоактивными веществами и источниками радиоактивных излучений (ОСП-72/87). 3 группа – документы, регламентирующие, как правильно проводить радиационный контроль и оценивать радиационную обстановку. 4- группа – документы, регламентирующие правовые основы по радиационной безопасности (О государственной программе по ликвидации последствий аварии на ЧАЭС) Закон “О социальной защите граждан, пострадавших от катастрофы на Чернобыльской АЭС»(22,02,1991) направлен на защиту прав и интересов граждан, принимавших участие в ликв.последствий катастрофы ЧАЭС. Граждане имеют право на получение льгот и компенсаций за ущерб, нанесенный их здоровью и имуществу. Установлена доза облучения на территории, где условия проживания и труд.деятельность не требуют ограничений – 1 м3в (0,1 бэр) в год. Закон «О правовом режиме территорий, которые подверглись радиоактивному загрязнению в результате катастрофы на ЧАЭС». 12,11,1991. Территория РБ поделена на зоны в зависимости от степени загрязнения: зона отчуждения, зона первоочередного отселения, зона последующего отселения, зона с правом отселения, зона проживания с периодическим радиац.контролем. Границы зон пересматриваются 1 раз в 3 года.
Виды радиационного контроля РБ, классификация приборов радиационного контроля. - Дозиметрические, предназначенные для измерения дозы облучения и мощности экспозиционной (полевой эквивалентной) дозы гамма-излучения (ИД-1, «Сосна») - Радиометрические, предназначенные для определения удельной и объемной активности радионуклидов в веществах и измерения плотности потока бета-излучения с загрязненных поверхностей (СРП-68-01, РУГ-90) - Спектрометрическая аппаратура, служащая для регистрации и анализа энергетического спектра и идентификации на этой основе излучающих радионуклидов (СИЧ) Виды радиационного контроля - За продуктами питания, водой, продуктами растениеводства и животноводства (нормативные документы РКУ-90, ВДУ-91), регламентирующие содержание радионуклидов - За поверхностным загрязнением кожи, обуви, техники, зданий, сооружений (РКУ-2004) - За облучением населения(НРБ 76/87)
Радиоактивность, изотопы, радионуклиды. РАДИАКТИВНОСТЬ – это процесс самопроизвольного превращения неустойчивого нуклида в другой нуклид с испусканием ионизирующего излучения. Единицами измерения активности радиоактивных веществ являются беккерель (Бк) и кюри (Ки) = 3,7*10 в 10 Бк. Изотопы – атомы химического элемента, отличающиеся от атомов того же химического элемента своей массой. Радионуклиды – радиоактивные нуклиды. А - особо высокая – 0,1 – Pu-238, Pu-239 Б – высокая – 1 – Sr-90, j-131 В – средняя – до 10 – cs-137 Г – малая – до 10 – Fe-55 Атомы одного и того же элемента, ядра которых состоят из одинакового числа протонов, но различного числа нейтронов, называются изотопами. Такие атомы имеют одинаковые химические свойства, поскольку у них один и тот же атомный номер, но различаются разными массовыми числами. Ядра всех изотопов химических элементов образуют группу нуклидов. Для различия изотопов у символа элемента слева вверху ставится число, соответствующее массовому числу данного изотопа, и внизу слева указывается атомный номер элемента: А X Z Некоторые нуклиды стабильны, т.е. при отсутствии внешнего воздействия никогда не претерпевают никаких превращений (стабильные нуклиды). Большинство же нуклидов нестабильны; они постоянно превращаются в другие нуклиды и называют их радионуклидами. В конце прошлого века были сделаны два чрезвычайно важных открытия: в 1895 году немецким физиком В.К. Рентгеном был открыт новый, не известный до этого вид излучения, а в 1896 году французский физик А. Беккерель обнаружил, что уран самопроизвольно испускает невидимые лучи, вызывающие свечение некоторых веществ и потемнение фотопластинки. Это свойство было названо радиоактивностью, а излучение — радиоактивным. Радиоактивность — это самопроизвольное превращение (распад) атомных ядер, приводящее к изменению атомного номера или энергетического состояния ядра. Французские физики М. Складовская-Кюри и П. Кюри установили, что радиоактивностью обладает не только уран, но и некоторые другие элементы, в частности радий, торий, вновь открытый ими элемент полоний и др. Они экспериментально доказали, что при радиоактивном распаде испускаются альфа- или бета-частицы. В результате радиоактивных превращений возникают ядерные излучения, основными из которых являются альфа-частицы, бета-частицы, гамма-лучи, нейтроны, рентгеновские лучи. Альфа-распад наблюдается у радиоактивных изотопов тяжелых элементов с атомным номером Z > 82. В результате альфа-распада число протонов в ядре уменьшается на две единицы, на столько же единиц уменьшается число нейтронов. Следовательно, образуется новое ядро, атомный номер которого будет на две, а массовое число — на четыре единицы меньше. Энергия радиоактивных излучений измеряется специальными единицами. За единицу энергии принят электронвольт (эВ). Электронвольт — это энергия, которую приобретает электрон, проходя в электрическом поле разность потенциалов, равную одному вольту. При бета-распаде наблюдаются три типа превращений: в-распад, или электронный распад; р+-распад, или позитрон-ный распад; электронный захват. Электронный в-распад характерен для подавляющего числа известных в настоящее время естественных и искусственных радионуклидов (131 j, 32 р). Вылет из ядра электрона (р-распад) связан с превращением одного из нейтронов в протон. В результате число протонов в ядре увеличится на единицу, а суммарное число протонов и нейтронов не изменится. Следовательно, при электронном бета-распаде образуется новое ядро с атомным номером на единицу большим, чем у исходного, и с тем же массовым числом. Позитронный р+-распад наблюдается лишь у незначительной части искусственных радиоактивных изотопов. При вылете из ядра позитрона (р+-распад) происходит превращение одного из протонов ядра в нейтрон. В результате вновь образованное ядро будет иметь атомный номер на единицу меньший и то же массовое число. Такой тип р-распада, как электронной захват, редко встречается. При электронном захвате протон ядра захватывает электрон, находящийся на одной из ближайших орбит электронной оболочки атома, это приводит к тому, что протон превращается в нейтрон. Место, которое занимал захваченный электрон, освобождается. Оно немедленно заполняется электроном из других, более далеких от ядра, слоев оболочки. Избыток энергии, освобождающийся при таком переходе, испускается атомом в виде рентгеновского характеристического или другого излучения. Электронный захват наблюдается у 58Со (кобальт). 15 % его ядер дают р-распад, 85 % — электронный захват. Максимальная энергия р-частиц, испускаемых различными радионуклидами, составляет 0,1—3,5 МэВ.
Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|