Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова «основание»), кислотными и амфотерными.





Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова «основание»), кислотными и амфотерными.

Основными оксидаминазываются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na2O, K2O, MgO, CaO и т.д.

Амфотерные гидроксиды – гидроксиды, способные реагировать и с кислотами, и со щелочами. В зависимости от того, является ли соответствующий оксид основным, кислотным или амфотерным, соответственно различают:

  • основные гидроксиды (основания) — только гидроксиды металлов со степенью окисления +1, +2, проявляющие основные свойства (например, гидроксид кальция Ca(ОН)2, гидроксид калия KOH, гидроксид натрия NaOH и др.) При реакциях и диссоциации отщепляется группа -OH.
  • кислотные гидроксиды (кислородсодержащие кислоты) — гидроксиды неметаллов и металлов со степенью окисления +5, +6, проявляющие кислотные свойства (например, азотная кислота HNO3, серная кислота H2SO4, сернистая кислота H2SO3 и др.) При реакциях и диссоциации отщепляется протон.
  • амфотерные гидроксиды, гидроксиды металлов со степенью окисления +3, +4 и нескольких металлов со степенью окисления +2, которые проявляют амфотерные свойства. Амфотерные гидроксиды проявляют в зависимости от условий либо основные, либо кислотные свойства (например, гидроксид алюминия Al(ОН)3, гидроксид цинка Zn(ОН)2).

Термин «гидроксиды» часто применяют только по отношению к основным и амфотерным гидроксидам. Также иногда называют гидроксидом воду.

Кислотами называются сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла и кислотный остаток. По наличию или отсутствию кислорода в молекуле кислоты делятся на кислородсодержащие (H2SO4 серная кислота, H2SO3 сернистая кислота, HNO3 азотная кислота, H3PO4 фосфорная кислота, H2CO3 угольная кислота, H2SiO3 кремниевая кислота) и бескислородные (HF фтороводородная кислота, HCl хлороводородная кислота (соляная кислота), HBr бромоводородная кислота, HI иодоводородная кислота, H2S сероводородная кислота).



В зависимости от числа атомов водорода в молекуле кислоты кислоты бывают одноосновные (с 1 атомом Н), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н).Например, азотная кислота HNO3 одноосновная, так как в молекуле её один атом водорода, серная кислота H2SO4 двухосновная и т.д.

  К И С Л О Т Ы  
Одноосновные Двухосновные Трехосновные
HNO3 азотная HF фтороводородная HCl хлороводородная HBr бромоводородная HI иодоводородная H2SO4 серная H2SO3 сернистая H2S сероводородная H2CO3 угольная H2SiO3 кремниевая H3PO4 фосфорная

Неорганических соединений, содержащих четыре атома водорода, способных замещаться на металл, очень мало.

Часть молекулы кислоты без водорода называется кислотным остатком.

Кислотные остаткимогут состоять из одного атома (-Cl, -Br, -I) – это простые кислотные остатки, а могут – из группы атомов (-SO3, -PO4, -SiO3) – это сложные остатки.

В водных растворах при реакциях обмена и замещения кислотные остатки не разрушаются:

H2SO4 + CuCl2 → CuSO4 + 2 HCl↑

Слово ангидридозначает безводный, то есть кислота без воды. Например,

H2SO4 – H2O → SO3. Бескислородные кислоты ангидридов не имеют.

Своё название кислоты получают от названия образующего кислоту элемента (кислотообразователя) с прибавлением окончаний «ная» и реже «вая»: H2SO4 – серная; H2SO3 – угольная; H2SiO3 – кремниевая и т.д.

Элемент может образовать несколько кислородных кислот. В таком случае указанные окончания в названии кислот будут тогда, когда элемент проявляет высшую валентность (в молекуле кислоты большое содержание атомов кислорода). Если элемент проявляет низшую валентность, окончание в названии кислоты будет «истая»: HNO3 – азотная, HNO2 – азотистая

Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH)2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH4+ (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH3 + H2O = NH4OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH)3, Ca(OH)2, Fe(OH)3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH)2, Sr(OH)2, Ba(OH)2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания– это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания Слабые основания
NaOH гидроксид натрия (едкий натр) KOH гидроксид калия (едкое кали) LiOH гидроксид лития Ba(OH)2 гидроксид бария Ca(OH)2 гидроксид кальция (гашеная известь) Mg(OH)2 гидроксид магния Fe(OH)2 гидроксид железа (II) Zn(OH)2 гидроксид цинка NH4OH гидроксид аммония Fe(OH)3 гидроксид железа (III) и т.д. (большинство гидроксидов металлов)

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Если рассматривать соли как продукты замены протонов в кислотах или гидроксогрупп в основаниях, то можно выделить следующие типы солей[4]:

  1. Средние (нормальные) соли — продукты замещения всех катионов водорода в молекулах кислоты на катионы металла (Na2CO3, K3PO4).
  2. Кислые соли — продукты частичного замещения катионов водорода в кислотах на катионы металла (NaHCO3, K2HPO4). Они образуются при нейтрализации основания избытком кислоты (то есть в условиях недостатка основания или избытка кислоты).
  3. Осно́вные соли — продукты неполного замещения гидроксогрупп основания (OH-) кислотными остатками ((CuOH)2CO3). Они образуются в условиях избытка основания или недостатка кислоты.

По числу присутствующих в структуре катионов и анионов выделяют следующие типы солей[7]:

  1. Простые соли — соли, состоящие из одного вида катионов и одного вида анионов (NaCl)
  2. Двойные соли — соли, содержащие два различных катиона (KAl(SO4)2·12 H2O).
  3. Смешанные соли — соли, в составе которых присутствует два различных аниона (Ca(OCl)Cl).

Также различают гидратные соли (кристаллогидраты), в состав которых входят молекулы кристаллизационной воды, например, Na2SO4·10 H2O, и комплексные соли, содержащие комплексный катион или комплексный анион (K4[Fe(CN)6], [Cu(NH3)4](OH)2). Внутренние соли образованы биполярными ионами, то есть молекулами, содержащими как положительно заряженный, так и отрицательно заряженный атом

Билет.

Мета́ллы (от лат. metallum — шахта, рудник) — группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск.

Если в таблице Д. И. Менделеева провести диагональ от бора к астату, то в главных подгруппах под диагональю окажутся атомы-металлы, а в побочных подгруппах все элементы ― металлы. Элементы, расположенные вблизи диагонали, обладают двойственными свойствами: в некоторых своих соединениях ведут себя как металлы; в некоторых ― как неметаллы.

Химическая связь

Все взаимодействия, приводящие к объединению химических частиц (атомов, молекул, ионов и т. п.) в вещества делятся на химические связи и межмолекулярные связи (межмолекулярные взаимодействия).

Химические связи - связи непосредственно между атомами. Различают ионную, ковалентную и металлическую связь.

Металлическая связь - химическая связь, образованная за счет обобществления валентных электронов всех связываемых атомов металлического кристалла. В результате образуется единое электронное облако кристалла, которое легко смещается под действием электрического напряжения - отсюда высокая электропроводность металлов.
Металлическая связь образуется в том случае, когда связываемые атомы большие и потому склонны отдавать электроны. Простые вещества с металлической связью - металлы (Na, Ba, Al, Cu, Au и др.), сложные вещества - интерметаллические соединения (AlCr2, Ca2Cu, Cu5Zn8 и др.).
Металлическая связь не обладает направленностью насыщаемостью. Она сохраняется и в расплавах металлов. Атомно-кристаллическое строение металлов В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл? Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы. Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в трехмерном пространстве, и образует кристаллические решетки. Химия, физика и металловедение - это науки, которые занимаются изучением особенностей строения таких структур. кристаллические решетки химия Сама элементарная ячейка - это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства. Существует несколько разновидностей кристаллических решеток. Объединяет их все одна особенность - в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

 

Общие физические свойства

Объясняются особым строением кристаллической решетки - наличием свободных электронов ("электронного газа").

- Пластичность - способность изменять форму при ударе, вытягиваться в проволоку, прокатываться в тонкие листы. В ряду Au,Ag,Cu,Sn,Pb,Zn,Fe уменьшается.

- Блеск, обычно серый цвет и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл квантами света.

- Электропроводность.Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. В ряду Ag,Cu,Al,Fe уменьшается.
При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение "электронного газа".

- Теплопроводность. Закономерность та же. Обусловлена высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность - у висмута и ртути.

- Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

- Плотность. Она тем меньше, чем меньше атомная масса металла и чем больше радиус его атома (самый легкий - литий (r=0,53 г/см3); самый тяжелый – осмий (r=22,6 г/см3).
Металлы, имеющие r < 5 г/см3 считаются "легкими металлами".

- Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -390C), самый тугоплавкий металл – вольфрам (t0пл. = 33900C).
Металлы с t0пл. выше 10000C считаются тугоплавкими, ниже – низкоплавкими.

Химические свойства
1. Окислительные свойства неметаллов проявляются при взаимодействии с металлами
4Al + 3C = Al4C3
2. Неметаллы играют роль окислителя при взаимодействии с водородом
H2 + F2 = 2HF
3 Любой неметалл выступает в роли окислителя в реакциях с теми металлами, которые имеют низкую ЭО
2P + 5S = P2S5
4. Окислительные свойства проявляются в реакциях с некоторыми сложными веществами
CH4 + 2O2 = CO2 + 2H2O
5. Неметаллы могут играть роль окислителя в реакциях со сложными веществами
2FeCl2 + Cl2 = 2FeCl3
6. Все неметаллы выступают в роли восстановителей при взаимодействии с кислородом
4P + 5O2 = 2P2O5
7. Многие неметаллы выступают в роли восстановителей в реакциях со сложными веществами-окислителями
S + 6HNO3 = H2SO4 + 6NO2 + 2H2O
8. Наиболее сильные восстановительные свойства имеют углерод и водород
ZnO + C = Zn + CO;
CuO + H2 = Cu + H2O
9. Существуют и такие реакции, в которых один и тот же неметалл является одновременно и окислителем, и восстановителем. Это реакции самоокисления-самовосстановления (диспропорционирования)
Cl2 + H2O =HCl + HClO I. Реакции с неметаллами

С кислородом:

2Mg+ O2 2MgO

С серой:

Hg + S HgS

С галогенами:

Ni + Cl2 Ni+2Cl2

С азотом:

3Ca + N2 Ca3N2


С фосфором:

3Ca + 2P Ca3P2


С водородом (реагируют только щелочные и щелочноземельные металлы):

2Li + H2 2LiH
Ca + H2 CaH2

II. Реакции с кислотами

Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl MgCl2 + H2

2Al+ 6HCl 2AlCl3 + 3H2

6Na + 2H3PO4 2Na3PO4 + 3H2

Восстановление металлами кислот-окислителей смотри в разделах: "окислительно-восстановительные реакции", "серная кислота", "азотная кислота".

III. Взаимодействие с водой

Активные (щелочные и щелочноземельные металлы) образуют растворимое основание и водород:

2Na0 + 2H2O 2NaOH + H2

Ca0 + 2H2O Ca(OH)2 + H2

Металлы средней активности окисляются водой при нагревании до оксида:

Zn0 + H2O ZnO + H2

Неактивные (Au, Ag, Pt) - не реагируют.

Вытеснение более активными металлами менее активных металлов из растворов их солей:


Fe+ CuSO4 Cu + FeSO4

Билет.

Мета́ллы (от лат. metallum — шахта, рудник) — группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск.

С усилением металлических свойств соответствующих химических элементов усиливаются и основные свойства их оксидов и гидроксидов.
Для s- и р-элементов по периоду слева направо они изменяются от ярко выраженных основных свойств у соединений щелочных и щелочноземельных металлов до амфотерных у металлов, стоящих ближе к линии, разделяющей металлы и неметаллы (у алюминия, германия, сурьмы, свинца). Так, например, свежеосажденный гидроксид алюминия легко растворяется в растворах как кислот, так и щелочей:

Аl(ОН)3 + 3HCl = AlCl3 + 3H2O;
Аl(ОН) 3 + 3КОН = К3 [Аl(ОН) 6].

Амфотерные оксиды и гидроксиды вступают в реакции не только с растворами щелочей, но и с твердыми основаниями при повышенной температуре (при сплавлении). Для проведения такой реакции смесь исходных твердых веществ нагревают до определенной температуры. При этом образуются иные, чем при реакции в водном растворе, продукты реакции. Например, при сплавлении гидроксида хрома(III) с гидроксидом, оксидом или карбонатом калия получается соль метахромовой кислоты НСЮ2 — метахромит калия:

Сr(ОН)3 + КОН =t KСrO2 + 2Н2О↑;
2Cr(ОН)3 + К2O =t 2КСrO2 + 3H2O↑;
2Сr(ОН)3 + 2СO3 =t 2КСrO2 + 3H2O↑ + CO2↑.

Оксиды щелочных и щелочноземельных металлов активно реагируют с водой с образованием растворимых гидроксидов:

К2O + Н2O = 2КОН;
ВаО + Н2O = Ва(ОН)2.

По группе сверху вниз металлические свойства s- и р-элементов усиливаются, и, соответственно, нарастают основные свойства их оксидов и гидроксидов. Так, например, в группе IIA оксид и гидроксид бериллия проявляют амфотерные свойства — легко растворяются в растворах кислот и щелочей:

ВеО + 2HCI = ВеС12 + Н2O;
ВеО + Н2O + 2NaOH = Na2[Be(OH) 4].

Соответствующие соединения бария и радия имеют ярко выраженные основные свойства:

ВаО + Н2O = Ва(ОН)2;
Ва(ОН)2 + 2HNO3 = Ba(NO3)2 + 2Н2O.

Существенное влияние на кислотно-основные свойства оксидов и гидроксидов d-элементов оказывает степень окисления атома металла: с увеличением степени окисления атома металла кислотные свойства соответствующего оксида и гидроксида усиливаются. Например, хром образует оксиды и гидроксиды, в которых атомы хрома проявляют степени окисления +2, +3 и +6:

Кислотно-основные свойства этих оксидов изменяются от основных (у СrО и Сr(ОН)2) через амфотерные (у Сr2O3 и Сr(ОН) 3) до кислотных (у СrO3 и Н2СrO4). Аналогичная зависимость наблюдается и для других d-металлов.

Получение металлов Для того чтобы изготовить сплав, необходимо в первую очередь получить металл из природной руды. Самородные элементы – это те вещества, которые находятся в природе в свободном состоянии. К ним относится платина, золото, олово, ртуть. Их отделяют от примесей механически или с помощью химических реагентов. Остальные металлы добывают путем обработки их соединений. Они содержатся в различных ископаемых. Руда – это минералы и горные породы, в состав которых входят соединения металлов в виде оксидов, карбонатов или сульфидов. Для их получения используют химическую обработку. Методы получения металлов: • восстановление оксидов углем; • получение олова из оловянного камня; • выплавка чугуна из железной руды; • обжигание сернистых соединений в специальных печах. Для облегчения добывания металлов из рудных пород к ним добавляют различные вещества, называемые флюсами. Они помогают удалять нежелательные примеси, такие как глина, известняк, песок. В результате этого процесса получаются легкоплавкие соединения, называемые шлаками. При наличии значительного количества примесей руду перед выплавкой металла обогащают путем удаления большой части ненужных компонентов. Наиболее широко применяемые способы данной обработки – флотация, магнитный и гравитационный способ. -

Электролиз расплава

I. Про­цес­сы, про­ис­хо­дя­щие при элек­тро­ли­зе рас­пла­вов элек­тро­ли­тов

В рас­пла­вах элек­тро­ли­ты дис­со­ци­и­ру­ют на ионы. Это тер­ми­че­ская дис­со­ци­а­ция элек­тро­ли­тов. При про­пус­ка­нии элек­три­че­ско­го тока ка­ти­о­ны вос­ста­нав­ли­ва­ют­ся на ка­то­де, так как при­ни­ма­ют от него элек­тро­ны. Ани­о­ны кис­лот­но­го остат­ка и гид­рок­сид-ани­о­ны окис­ля­ют­ся на ка­то­де, так как от­да­ют ему свои элек­тро­ны.

При­мер №1. Элек­тро­лиз рас­пла­ва хло­ри­да на­трия

При тер­ми­че­ской дис­со­ци­а­ции хло­ри­да на­трия об­ра­зу­ют­ся ионы на­трия и хлора.

Na Cl → Na+ + Cl

– на ка­то­де вы­де­ля­ет­ся на­трий:

2 Na+ + 2 e → 2 Na

– на аноде вы­де­ля­ет­ся хлор:

2 Cl − 2 e → Cl2

– сум­мар­ное ион­ное урав­не­ние ре­ак­ции (урав­не­ние ка­тод­но­го про­цес­са по­мно­жи­ли на 2)

2 Na+ + 2 Cl → 2 Na0 + Cl02

– сум­мар­ная ре­ак­ция:

2 NaCl 2 Na + Cl2

При­мер №2. Элек­тро­лиз рас­пла­ва гид­рок­си­да калия

При дис­со­ци­а­ции гид­рок­си­да калия об­ра­зу­ют­ся ионы калия и гид­рок­сид ионы.

КОН → К+ + ОН

– на ка­то­де вы­де­ля­ет­ся калий:

К+ + 1 e → К

– на аноде вы­де­ля­ет­ся кис­ло­род и вода:

4ОН − 4 e → О2 + 2Н2О

– сум­мар­ное ион­ное урав­не­ние ре­ак­ции (урав­не­ние ка­тод­но­го про­цес­са по­мно­жи­ли на 4)

+ + 4ОН → 4 К0 + О2 + 2Н2О

– сум­мар­ная ре­ак­ция:

4КОН 4 К0 + О2 + 2Н2О

При­мер №3. Элек­тро­лиз рас­пла­ва суль­фа­та на­трия

При дис­со­ци­а­ции рас­пла­ва суль­фа­та на­трия об­ра­зу­ют­ся ионы на­трия и суль­фат-ио­ны.

Na2SO4 → 2Na+ + SО42−

– на ка­то­де вы­де­ля­ет­ся на­трий:

Na+ + 1 e → Na

– на аноде вы­де­ля­ет­ся кис­ло­род и оксид серы (VI):

2SО42− − 4 e → 2SО32

– сум­мар­ное ион­ное урав­не­ние ре­ак­ции (урав­не­ние ка­тод­но­го про­цес­са по­мно­жи­ли на 4)

4 Na+ + 2SО42− → 4 Na 0 + 2SО32

– сум­мар­ная ре­ак­ция:

2 Na2SO4 4 Na 0 + 2SО32

За­ко­но­мер­но­сти элек­тро­ли­за рас­пла­вов элек­тро­ли­та

1. При элек­тро­ли­зе рас­пла­вов ще­ло­чей и солей на ка­то­де оса­жда­ет­ся ме­талл.

2. Ани­о­ны бес­кис­ло­род­ных кис­лот окис­ля­ют­ся на аноде, давая со­от­вет­ству­ю­щее со­еди­не­ние, на­при­мер, хло­рид-ани­о­ны об­ра­зу­ют хлор.

3. Ани­о­ны кис­ло­род­со­дер­жа­щих кис­лот об­ра­зу­ют со­от­вет­ству­ю­щий оксид и кис­ло­род.

Электролиз раствора

II. Про­цес­сы, про­ис­хо­дя­щие при элек­тро­ли­зе рас­тво­ров элек­тро­ли­тов

При элек­тро­ли­зе рас­тво­ров элек­тро­ли­тов, кроме ин­те­ре­су­ю­щих нас со­еди­не­ний есть еще и вода, ко­то­рая также может под­вер­гать­ся элек­тро­ли­зу. По­это­му, ис­хо­дя из стро­е­ния со­еди­не­ния, элек­тро­лиз может про­те­кать либо с иона­ми соли, либо с водой.

Про­цес­сы, про­ис­хо­дя­щие на ка­то­де

1. Ка­ти­о­ны ак­тив­ных ме­тал­лов, сто­я­щие в ряду на­пря­же­ний до алю­ми­ния, не раз­ря­жа­ют­ся на ка­то­де. См. рис. 2. В этом слу­чае про­ис­хо­дит толь­ко вос­ста­нов­ле­ние воды.

Рис. 2

2О+2 e → Н2 + 2ОН

2. Ка­ти­о­ны ме­тал­лов, рас­по­ло­жен­ных в ряду на­пря­же­ний от алю­ми­ния до во­до­ро­да, раз­ря­жа­ют­ся в той или иной сте­пе­ни од­но­вре­мен­но с мо­ле­ку­ла­ми воды. При этом од­но­вре­мен­но про­ис­хо­дят сле­ду­ю­щие про­цес­сы:

Men++ne- → Me

2О+2 e → Н2 + 2ОН

3. При на­ли­чии в рас­тво­ре ка­ти­о­нов ме­тал­лов, рас­по­ло­жен­ных в ряду на­пря­же­ний после во­до­ро­да, на ка­то­де, пре­жде всего, про­ис­хо­дит вос­ста­нов­ле­ние ка­ти­о­нов этих ме­тал­лов. Men++ne- →Me

Про­цес­сы, про­ис­хо­дя­щие на аноде

Раз­ли­ча­ют два типа ано­дов: инерт­ный и ак­тив­ный. Инерт­ный анод – это анод, ма­те­ри­ал ко­то­ро­го не окис­ля­ет­ся в про­цес­се элек­тро­ли­за (Pt). Ак­тив­ный анод – это анод, ко­то­рый окис­ля­ет­ся в про­цес­се элек­тро­ли­за. На­при­мер, гра­фит.

Элек­тро­лиз с инерт­ным ано­дом

В анод­ном про­цес­се могут при­ни­мать уча­стие ани­о­ны неко­то­рых бес­кис­ло­род­ных кис­лот Cl- ,Br- ,I-, S2-и гид­рок­сид-ио­ны ОН -( раз­ря­жа­ют­ся толь­ко эти ани­о­ны), на­при­мер:

2Br- - 2е- →Br2; 4ОН − 4 e → О2 +2Н2О (в ще­лоч­ной среде)

Если в рас­тво­ре при­сут­ству­ют ани­о­ны F-,SO2-4, NO-3, PO43-, CO32- и неко­то­рые дру­гие, то окис­ле­нию под­вер­га­ет­ся толь­ко вода:

2О - 4 e → О2 + 4Н+(в ней­траль­ной и кис­лой среде)

Элек­тро­лиз с ак­тив­ным ано­дом

В слу­чае с ак­тив­ным ано­дом, число кон­ку­ри­ру­ю­щих окис­ли­тель­ных про­цес­сов уве­ли­чи­ва­ет­ся до трех:

- Элек­тро­хи­ми­че­ское окис­ле­ние ма­те­ри­а­ла анода

- Окис­ле­ние воды с вы­де­ле­ни­ем кис­ло­ро­да

- Окис­ле­ние ани­о­нов рас­тво­рен­но­го со­еди­не­ния

Генетический ряд металла

Кальций (типичный металл) при сгорании на воздухе образует оксид CaO

, который присоединяет воду, превращаясь в основание – гидроксид кальция Ca(OH)2

. Последовательность этих реакций можно представить в виде схемы:

Ca→CaO→Ca(OH)2

металл→ основной оксид→основание

Следует помнить, что не все металлы при окислении кислородом образуют оксиды (см. тему "химические свойства металлов"). Основные оксиды взаимодействуют с водой только в случае образования растворимых оснований.

 

В качестве примера генетического ряда неметалла рассмотреть ряд серы со степенями окисления +4 и +6.

S -SO2- H2SO3- Na2SO3- SO2 -SO3- H2SO4 -SO2- S.

S + O2 = SO2

SO2 + H2O = H2SO3

H2SO3 +2NaOH = Na2SO3 + 2H2O

Na2SO3 + 2HCl = 2NaCl + SO2 + H2O

2SO2 + O2 = 2SO3

SO3 + H2O = H2SO4

Cu + 2H2SO4 (конц. ) = CuSO4 + SO2 + 2H2O

SO2 + 2H2S = 2H2O + 3S

Генетический ряд цинка.

Реакции:

1)2Zn + O2 = 2ZnO(реакция идёт при темепратуре)

2)ZnO + H2SO4 = ZnSO4 + H2O

3)ZnSO4+ 2NaOH = Zn(OH)2 + Na2SO4

4)Zn(OH)2 + 2HCl = ZnCl2 + 2H2O

5)Zn(OH)2 + 2NaOH = Na2[Zn(OH]4)

6)Na2[Zn(OH]4) + 4HCl = 2NaCl + ZnCl2+4H2O

7)ZnCl2 + Ca = Zn + CaCl2

8)ZnO + 2HCl = ZnCl2 + H2O

9)ZnO + 2NaOH + H2O = (под t = 90°C) Na2[Zn(OH]4)

 

Генетические ряды и генетическая связь в органической химии.

В органической химии также следует различать более общее понятие — генетическая связь и более частное понятие генетический ря. Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одикиконым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в кото-рый включим наибольшее число классов соединений:

Каждой цифре над стрелкой соответствует определенное урнпненне реакции (уравнение обратной реакции обозначено цифрой со штрихом):

Билет.

Ангидриды карбоновых кислот

Гид­рок­сил карбок­силь­ной груп­пы спо­со­бен при опре­де­лен­ных усло­ви­ях за­ме­щать­ся на дру­гие атомы или груп­пы ато­мов.

Ан­гид­ри­ды

В при­сут­ствии во­до­от­ни­ма­ю­щих средств, таких как оксид фос­фо­ра (V), гид­рок­сил одной кар­бо­но­вой кис­ло­ты за­ме­ща­ет­ся на оста­ток дру­гой кар­бо­но­вой кис­ло­ты:

2RCOOH (RCO)2O + Н2О

Ан­гид­ри­ды кар­бо­но­вых кис­лот (RCO)2O – про­из­вод­ные кар­бо­но­вых кис­лот, пред­став­ля­ю­щие собой про­дукт за­ме­ще­ния гид­рок­си­ла карбок­силь­ной груп­пы одной кис­ло­ты на оста­ток дру­гой кис­ло­ты.

Ма­ле­и­но­вый ан­гид­рид:

Ан­гид­ри­ды кар­бо­но­вых кис­лот более ре­ак­ци­он­но­спо­соб­ны, чем сами кис­ло­ты и слож­ные эфиры. Они легко всту­па­ют в ре­ак­ции нук­лео­филь­но­го за­ме­ще­ния – на­при­мер, гид­ро­ли­зу­ют­ся:

(RCO)2О + H2O = 2RCOOH.

Органические кислоты

Карбоновые кислоты

Если в неорганической химии понятие «кислота» определяется наличием протона водорода в растворе H+, то органические кислоты определяются группой -СOOH.

Карбоксильная группа -COOH состоит по сути из двух групп: карбонильной -СOH (альдегидная группа) и гидроксильной группы -OH (в органической химии эта группа относится к спиртам).Интересно то, что группа -СOH очень редко вступает в химические реакции (в школьном курсе и в формате ЕГЭ — крайне редко), а вот гидроксильная группа -OH — «отдувается за двоих»!

Химические свойства кислот

4) Взаимодействие с основаниями и амфотерными гидроксидами:

 

H2SO4 + Ca(OH)2 ® CaSO4¯ + 2H2O 2H+ + SO42– + Ca2+ +2OH ® CaSO4¯ + 2H2O

H2SO4 + Zn(OH)2 ® ZnSO4 + 2H2O 2H+ + Zn(OH)2 ® Zn2+ + 2H2O.

 

5) Взаимодействие с основными и амфотерными оксидами:

 

H2SO4 + CaO ® CaSO4¯ + H2O 2H+ + SO42– + CaO ® CaSO4¯ + H2O

H2SO4 + ZnO ® ZnSO4 + H2O 2H+ + ZnO ® Zn2+ + H2O.

 

6) Взаимодействие с металлами: а) кислоты-окислители по Н+ (HCl, HBr, HI, HClO4, H2SO4, H3PO4 и др.).

В реакцию вступают металлы, расположенные в ряду активности до водорода:

Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au

 

2HCl + Fe ® FeCl2 + H2­ 2H+ + Fe ® Fe2+ + H2­.

 

б) кислоты-окислители по аниону (концентрированная серная, азотная любой концентрации):

 

2Fe + 6H2SO4 (конц.) Fe2(SO4)3 + 3SO2­ + 6H2O

2Fe + 12H+ + 3SO42– ® 2Fe3+ + 3SO2­ + 6H2O.

 

7) Взаимодействие с солями. Реакция происходит, если соль образована более слабой или летучей кислотой, или если образуется осадок:

 

2HCl + Na2CO3 ® 2NaCl + CO2­ + H2O 2H+ + CO32– ® CO2­ + H2O

СaCl2 + H2SO4 ® CaSO4¯ + 2HCl Сa2+ + SO42- ® CaSO4¯.

 

Билет.

Основание — это химическое соединение, способное образовывать ковалентную связь с протоном (основание Брёнстеда ) либо с вакантной орбиталью другого химического соединения (основание Льюиса )[1]. В узком смысле под основаниями понимают осно́вные гидроксиды — сложные вещества, при диссоциации которых в водных растворах отщепляется только один вид анионов — гидроксид-ионы OH[2].

  ОСНОВАНИЯ ОРГАНИЧЕСКИЕ ОСНОВАНИЯОРГАНИЧЕСКИЕ, орг. соед., используемые на практике в качестве акцепторов протонов. К ним относят нейтр. основания (третичные амины, амидины) и анионные основания [алкоголяты и алтсил(или арил)амиды щелочных металлов, металлоорг. соед.]. К специфич. типам оснований органических относят также ангидрооснования (см. Кислоты и основания)и псевдооснования. Основания органические применяют прежде всего для ионизации соед. по связям О—Н, N—Н, С—Н. Ионизирующая способность оснований органических характеризуется константой ионизации сопряженной к-ты рКа (см. табл.). Важное преимущество их перед щелочами - р-римость в орг. р-рителях, что позволяет применять основания органические в неводных средах. КОНСТАНТЫ ИОНИЗАЦИИ НЕКОТОРЫХ ОРГАНИЧЕСКИХ ОСНОВАНИЙ В ВОДНОМ РАСТВОРЕ ПРИ 25 °С
         
  Соединение Ф-ла рк.  
  2,6-Ди-трет-бутилпиридин 4,95  
  N,N-Диметиланилин С6Н5N(СН3)2 5,10  
  Пиридин C5H5N 5,23  
  4-Диметиламинопиридин 9,37  
         

Продолжение табл.

         
  Соединение Триэтиламин Ф-ла (C2H5)3N рка 10,67  
  1,2,2,6,6-Пентаметилпиперидин 11.25  
  1,5-Диазабицикло [4.3.0]нон-5-ен (ДБН) ~12  
  Метилат натрия CH3ONa ~16  
  Этилат натрия C2H5ONa ~18  
  трет-Бутилат калия трет-C4H9OK ~19  
  Диизопропиламид лития [(CH3)2CH]2NLi ~35  
  Бутиллитий C4H9Li ~40 42  
         

Третичные амины относят к мягко действующим основаниям, в отличие от щелочей они не вызывают гидролиза сложноэфирных связей или лабильных связей С—Hal. Напротив, у анионных оснований ионизирующая способность намного сильнее, чем у щелочей.

Широкое применение в орг. синтезе находит триэтиламин. Так, ацилирование 1-метилимидазола в его присут. протекает в положение 2. Роль триэтиламина заключается в ионизации связи С-2—Н в катионе 1-ацил-3-метилимидазо-лия. что обеспечивает перенос ацильной группы к атому С-2:

При О-ацилировании фенолов для ионизации связи О—Н используют пиридин или его 4-диметиламинопроизводное; напр., в присут. последнего ацетилируется мезитол:

Для дегидрогалогенирования соед., содержащих чувствительные к щелочам и др. сильным основаниям группировки, применяют ДБН, к-рый, напр., превращает хлорацетилены, содержащие сложноэфирную группировку, в сопряженные енины:

Для изомеризации ацетиленов с неконцевой тройной связью в ацетилены с концевой тройной связью используют 3-аминопропиламид калия NH2CH2CH2CH2NHK:









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.