|
Правда про результат опыта Майкельсона-Морли.Специальный принцип относительности, в переводе на общепонятный язык, утверждает, что никакими физическими опытами внутри лаборатории невозможно обнаружить её прямолинейное равномерное движение. То есть, в принципе невозможен прибор, который детектировал бы свою скорость автономно – без оглядки на «неподвижные звёзды» и навигационные спутники. Напротив, по логике вышеизложенного, такое детектирование возможно – но лишь для локально-абсолютной скорости (1.6). Способный на это прибор, покоясь на земной поверхности, не дал бы отклик ни на скорость орбитального движения Земли вокруг Солнца, ни на скорость собственного движения Солнечной системы в Галактике. Единственная скорость, на которую он дал бы отклик – это его линейная скорость из-за вращения Земли вокруг своей оси. Потому что для такого прибора имел бы место лишь один «эфирный ветерок» - дующий с востока со скоростью, равной линейной скорости суточного вращения земной поверхности на местной широте. Вспомним: официальная история физики повествует о том, что упорные поиски эфирного ветра не увенчались успехом. Ключевым здесь считается опыт Майкельсона-Морли. Схема интерферометра Майкельсона, идея опыта и расчёт разности хода лучей приведены во множестве учебных пособий, и мы на этом останавливаться не будем. Широко известно об «отрицательном результате» опыта Майкельсона-Морли: никакого эфирного ветра, якобы, не обнаружилось. Это неправда. Опыт был нацелен на выявление эфирного ветра, обусловленного орбитальным движением Земли вокруг Солнца – и вот он, действительно, не обнаружился. Но ведь обнаружился «эфирный ветерок» с востока! Действительно, С. И. Вавилов обработал результаты опыта Майкельсона-Морли 1887 года и рассчитал наиболее достоверные сдвиги интерференционных полос, в зависимости от ориентации прибора. Из-за орбитального движения Земли, со скоростью 30 км/с, там ожидался эффект с размахом в 0.4 полосы. Цифры Вавилова демонстрируют волну с размахом 0.04-0.05 полосы, причём горбы и впадины этой волны соответствуют ориентациям плеч прибора в направлениях «север-юг» и «запад-восток» - независимо от времени суток и времени года. Официальная наука уклоняется от обсуждения этого впечатляющего эффекта. Мы же попробуем его объяснить. При длине плеча L =11 м, длине волны l=5700 Ангстрем, и скорости прибора V =0.35 км/с (на широте Кливленда), сдвиг на 0.05 полосы слишком велик, чтобы объяснить его на основе традиционного расчёта, дающего для ожидаемого сдвига полос величину (2 L /l)(V 2/ c 2), где c - скорость света. Но мы обратили внимание на следующее: от эксперимента к эксперименту по схеме Майкельсона-Морли наиболее сильно варьировалась длина плеча, причём увеличенные «ненулевые» результаты, в частности, у Миллера, получались как раз при увеличенных длинах плеч. Не могло ли оказаться так, что некоторый эффект, зависящий от длины плеч, не принимался в расчёт? Обратим внимание: интерферометр Майкельсона-Морли имеет ненулевой угол клина, т.е. угол между плоскостями эквивалентной воздушной прослойки. Ненулевой угол клина g и, соответственно, ненулевой угол схождения интерферирующих лучей 2g требуются здесь для того, чтобы интерференционная картинка представляла собой полосы равной толщины, а не полосы равного наклона. Наш анализ показывает, что, из-за ненулевого угла клина, разностный сдвиг интерференционных полос при двух вышеназванных характерных ориентациях прибора составит D n» 4 L g(V / c)/l. Поскольку экспериментаторы не принимали во внимание этот эффект, они не сообщали о величине угла клина. Но если подставить в это выражение для D n названную Вавиловым величину 0.05, а также вышеприведённые значения остальных параметров, то для угла клина мы получим цифру g»5.5×10-4 рад. Такая величина для угла клина интерферометра Майкельсона представляется нам совершенно реалистичной. Поэтому можно допустить, что Майкельсон и Морли в эксперименте 1887 года, фактически, продетектировали локально-абсолютную скорость прибора. Да и на что ещё мог реагировать прибор Майкельсона-Морли, кроме как на свою локально-абсолютную скорость? Это же не интерферометр Саньяка, в котором свет движется во встречных направлениях в обход контура с ненулевой площадью, благодаря чему детектируется собственное вращение прибора. У интерферометра Майкельсона-Морли площадь контура нулевая! И это не акселерометр, который используется, например, в системах инерциальной навигации – где детектируется ускорение, а затем оно интегрируется, и, таким образом, вычисляется скорость. Нет, прибор Майкельсона-Морли реагировал непосредственно на свою скорость, повергая в прах принцип относительности. Вот почему релятивисты помалкивают про эфирный ветерок с востока, который обнаружился у Майкельсона и Морли – но, наоборот, громко кричат о том, что не обнаружился эфирный ветер из-за орбитального движения Земли. Само собой, этот обман им пришлось подкреплять ещё целой вереницей обманов, которые на их языке называются «аналогами опыта Майкельсона-Морли». Эти «аналоги» - целый ряд выполненных по разным схемам опытов, в которых результаты поиска эфирного ветра оказались, практически, полностью нулевыми, как будто этот ветер отсутствовал совершенно. То, что в этих опытах никак не проявилось орбитальное движение Земли – это, само собой. Но почему там не проявилось движение установки из-за вращения Земли вокруг своей оси? Потому что это не-проявление было обусловлено либо метрологически, либо методологически. То есть, либо была недостаточна точность опыта, чтобы обнаружить эфирный ветерок с востока, со скоростью ~300 м/с, либо сама постановка опыта была такова, что обнаружение этого ветерка принципиально исключалось. Так, Эссен искал вариации частоты полого цилиндрического резонатора на 9200 МГц, которые имели бы место при изменениях его ориентации по отношению к линии эфирного ветра. При горизонтальном положении оси резонатора, он поворачивался в горизонтальной плоскости, делая оборот за минуту. Через каждые 45о поворота, частота резонатора измерялась с помощью кварцевого стандарта. Относительная разность частот резонатора для положений вдоль и поперёк линии эфирного ветра составляла бы (1/2)(V 2/ c 2). Для скорости эфирного ветра V =30 км/с, эффект составил бы ~5×10-9. Данные Эссена демонстрируют волну с размахом на порядок меньше. Такая волна свидетельствовала об отсутствии «орбитального» эфирного ветра. Но происхождение самой этой волны осталось невыясненным – причём, в её присутствии, не было шансов обнаружить волну из-за «суточного» эфирного ветра, с размахом на три порядка меньшим. Таунс с сотрудниками измеряли частоту биений у пары мазеров на аммиаке, установленных пучками молекул навстречу друг другу – причём, вдоль линии «запад-восток». Затем разворачивали установку на 180о и вновь измеряли частоту биений. Эти измерения проводились на протяжении более полусуток, чтобы Земля повернулась более чем на пол-оборота вокруг своей оси. «Орбитальный» эфирный ветер при такой методике обнаружился бы, а «суточный» - нет, поскольку, при развороте установки, допплеровские сдвиги частот у мазеров просто менялись ролями, и частота биений оставалась прежней. Ещё в одном эксперименте, выполненном под руководством Таунса, исследовалась частота биений двух ИК-лазеров, с ортогонально расположенными резонаторами, при поворотах установки на 90о между положениями, в которых один резонатор ориентирован по линии «север-юг», а другой – по линии «запад-восток». Принималось, что у резонатора, ориентированного параллельно «эфирному ветру», частота есть f 0(1-b2), а у резонатора, ориентированного ортогонально «эфирному ветру», частота есть f 0(1-b2)1/2, где f 0 – невозмущённая частота, b= V / c. Поскольку f 0=3×1014 Гц, то из-за скорости 30 км/с можно было ожидать разностный эффект с размахом 3 МГц. Размах же обнаруженного эффекта составил всего 270 кГц, причём он почти не зависел от времени суток, хотя проявлению «эфирного ветра» из-за орбитального движения Земли следовало быть максимальным в 0 и 12 часов, а минимальным – в 6 и 18 часов местного времени. Обнаруженный эффект интерпретировали как результат магнитострикции в металлических стержнях резонаторов из-за влияния магнитного поля Земли. Линейная скорость из-за суточного вращения дала бы здесь эффект с размахом около 300 Гц, который был бы сфазирован с эффектом от магнитострикции и тоже не зависел бы по величине от времени суток – а, значит, его не-обнаружение было обусловлено даже методологически. В особую группу можно выделить эксперименты, в которых обеспечивалась весьма высокая точность измерений – но, увы, ориентация всех элементов установки относительно земной поверхности была постоянна. Конечно, там не могло быть никаких разностных эффектов из-за линейной скорости суточного вращения. Поэтому оно никак не проявилось, например, в эксперименте с использованием стандарта частоты на охлаждённых ионах, или при спектроскопии двухфотонного поглощения в атомном пучке, или при сличениях частот двух лазеров видимого диапазона, стабилизированных разными способами. Между тем, при достаточной точности измерений и корректной методике, линейная скорость лаборатории из-за суточного вращения Земли успешно детектируется. Мы расскажем о двух таких экспериментах. Чемпни и соавторы разместили мёссбауэровские излучатель и поглотитель (Co57 и Fe57) на диаметрально противоположных участках ротора ультрацентрифуги, вращаемой в горизонтальной плоскости. Один детектор гамма-квантов был установлен с северной стороны от ротора, второй – с южной. Детекторы были прикрыты свинцовыми экранами с диафрагмами, пропускавшими лишь те кванты, которые шли в узком створе, соосном с линией «излучатель-поглотитель», когда эта линия была ориентирована в направлении
Рис.1.7.1
«север-юг». Пик резонансного поглощения на 14.4 кэВ, заранее полученный линейно-допплеровским методом (см. Рис.1.7.1), соответствовал скорости расхождения излучателя и поглотителя ~0.33 мм/с, при этом энергия рабочего перехода у поглотителя была меньше, чем у излучателя, на ~1.1×10-12. Идея опыта была основана на том, что если абсолютные скорости в эфире имеют физический смысл, то, при движении установки в эфире (расчёт был, опять же, на орбитальное движение Земли) вращение ротора даст неравенство абсолютных скоростей излучателя и поглотителя. Соответственно, их линии приобретут неодинаковые квадратично-допплеровские сдвиги. Так, пусть лаборатория движется в эфире на восток, а ротор вращается против часовой стрелки, если смотреть на него сверху. Тогда северный счётчик будет считать кванты в условиях, когда линейная скорость вращения излучателя складывается со скоростью установки в эфире, а линейная скорость вращения поглотителя – вычитается из неё. Из-за результирующих квадратично-
Рис.1.7.2
допплеровских сдвигов, линии излучателя и поглотителя сдвинутся друг к другу, отчего поглощение увеличится, т.е. скорость счёта уменьшится. Соответственно, для южного счётчика всё будет наоборот. В итоге опыт позволял сделать вывод о том, абсолютные или относительные скорости имеют физический смысл. Действительно, при каждом цикле измерений использовались две скорости вращения ротора – 200 Гц и 1230 Гц – дававшие линейные скорости вращения 55.3 и 340 м/с. Измерялись четыре величины: скорость счёта северного счётчика при малой и большой скоростях вращения, N L и N H, и, аналогично, для южного счётчика, S L и S H – и находилось отношение x=(S H/ S L)/(N H/ N L). При справедливости концепции относительных скоростей, отношение x было бы, с точностью до погрешностей, равно единице. При справедливости же концепции абсолютных скоростей, отношение x отличалось бы от единицы – причём, если бы имел место эфирный ветер из-за орбитального движения Земли, x зависело бы от времени суток. Как показывают результаты, которые мы воспроизводим (см. Рис.1.7.2), x близко к единице и не зависит от времени суток – т.е. орбитальный эфирный ветер никак не проявился. Вместе с тем, среднее по приведённому набору данных составляет, как можно видеть, 1.012. Не свидетельствует ли этот результат об эфирном ветерке из-за суточного вращения Земли? Если обозначить скорость этого ветерка через V, то квадратично-допплеровские расхождения линий излучателя и поглотителя для южного счётчика и, наоборот, их сближение для северного счётчика, составит величину D=2 Vv / c 2, где v – линейная скорость вращения излучателя и поглотителя. Используя график (см. Рис.1.7.1), мы нашли аппроксимации для функций скоростей счёта обоих счётчиков от скорости V – для меньшей и большей вышеназванных скоростей v. При меньшем значении v мы использовали линейную аппроксимацию, для S L(V) и N L(V), а при большем – квадратичную аппроксимацию, для S H(V) и N H(V). Вышеназванная комбинация этих четырёх функций даёт зависимость отношения x от V, которая приведена на Рис.1.7.3. Рис.1.7.3
Как можно видеть, на этом графике значение x=1.012 соответствует двум значениям V: 6.5 и 301 м/с. Для первого из них мы не усматриваем физического смысла, а второе всего на 7.9% отличается от 279 м/с – линейной скорости суточного вращения на широте Бирмингема, где проводился опыт. Едва ли можно сомневаться в том, что авторы продетектировали локально-абсолютную скорость лаборатории – но, странным образом, они проигнорировали этот результат. Ещё один эксперимент, где проявилась локально-абсолютная скорость лаборатории, провели Брилет и Холл. Они разместили гелий-неоновый лазер (3.39 мкм) и внешний
Рис.1.7.4
резонатор Фабри-Перо, по которому лазер был стабилизирован, на медленно вращающейся платформе (см. Рис.1.7.4). Частота этого лазера сравнивалась с частотой невращающегося гелий-неонового лазера, стабилизированного по линии поглощения в метане. Авторы утверждали, что эффект от «эфирного ветра» не превышал 0.13±0.22 Гц, или (1.5±2.5)×10-15. Между тем, они наблюдали стойкий систематический эффект на второй гармонике частоты вращения платформы, с амплитудой 17 Гц (2×10-13), причём фаза этого эффекта была строго согласована с ориентацией платформы относительно лаборатории. О магнитострикции речь не шла, поскольку зеркала внешнего резонатора были посажены на торцы трубки из стеклокерамики, к тому же резонатор был экранирован. Источник эффекта на второй гармонике остался невыясненным, и авторы везде говорили об этом эффекте как о паразитном. Давайте посмотрим – не мог ли он быть проявлением локально-абсолютной скорости лаборатории, т.е. 360 м/с (на широте 40о). Длина l внешнего резонатора Фабри-Перо была рана 30.5 см, а радиусы кривизны зеркал r были равны 50 см. Нам не известно о строгой теории сдвига резонансных частот неконфокального резонатора при его продольном или поперечном сносе. По нашим оценкам, с точностью до второго порядка, при продольном сносе частота изменяется так же, как и у резонатора с плоскими зеркалами: f=f 0(1-b2). Что касается случая поперечного сноса, то, с учётом неконфокальности резонатора, мы получили соотношение f=f 0(1-b2+(l/ 2 r)b2), которое в случае конфокального резонатора (l=r) совпадает, опять же, с соотношением для резонатора с плоскими зеркалами. Как можно видеть, размах разностного эффекта составил бы величину D f/f 0=(l/ 2 r)b2. Если приравнять её удвоенной амплитуде эффекта на второй гармонике, то для скорости получается значение 340 м/с, которое всего на 5.6% отличается от локально-абсолютной скорости лаборатории. На наш взгляд, этот результат Брилета и Холла не менее значителен, чем подтверждение, с 15-значной точностью, отсутствия квадратичных эффектов из-за остальных движений лаборатории. Итак, что же мы видим? В опытах, которые, как считается, подтверждают принцип относительности, отсутствие реакции прибора на свою локально-абсолютную скорость было обусловлено либо недостатком точности, либо самой методикой опыта. Если же, как исключение, детектирование локально-абсолютной скорости допускали как точность, так и методика опыта – обнаруживаемый эффект игнорировали или называли «паразитным». Мы рассказали всего о трёх опытах – Майкельсона-Морли, Чемпни с соавторами, Брилета-Холла – где, с большой долей вероятности, автономное детектирование локально-абсолютной скорости имело место. По-видимому, способов решения этой задачи гораздо больше, чем три, ведь не зря говорится, что «если есть хотя бы один способ – значит, есть много способов». Факт в том, что эта задача решается – и этот факт демонстрирует полную несостоятельность принципа относительности. Впрочем, если физический смысл локально-абсолютной скорости сводился бы лишь к возможности её автономного детектирования – грош цена была бы такому смыслу. Далее мы расскажем о ряде физических явлений, в которых локально-абсолютная скорость проявляется во всей своей красе – и о соответствующих, иногда драматических, исторических эпизодах.
Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|