Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Неспецифическая резистентность и иммунитет





Основное назначение лейкоцитов — участие в защитных реакциях организма против чужеродных агентов, способных нанести ему вред. Различают специфическую защиту, или иммунитет, и неспецифическую резистентность организма. Последняя в отличие от иммунитета направлена на уничтожение любого чужеродного агента. К неспецифической резистентности относятся фагоцитоз и пиноцитоз, система комплемента, естественная цитотоксичность, действие интерферонов, лизоцима, лизинов и других гуморальных факторов защиты.

Фагоцитоз. Это поглощение чужеродных частиц или клеток и их дальнейшее уничтожение. Явление фагоцитоза открыто И. И. Мечниковым, за что ему была присуждена Нобелевская премия 1908 г. Фагоцитоз присущ нейтрофилам, эозинофилам, моноцитам и макрофагам. И. И. Мечников выделил следующие стадии фагоцитоза: 1) приближение фагоцита к фагоцитируемому объекту, или лиганду; 2) контакт лиганда с мембраной фагоцита; 3) поглощение лиганда; 4) переваривание или уничтожение фагоцитированного объекта. Всем фагоцитам присуща амебовидная подвижность. Сцепление с субстратом, к которому движется лейкоцит, носит название адгезии. Только фиксированные, или адгезированные, лейкоциты способны к фагоцитозу. Фагоцит может улавливать отдаленные сигналы (хемотаксис) и мигрировать в их направлении (хемокинез). Хотя сотни продуктов метаболизма влияют на подвижность лейкоцитов, их действие проявляется лишь в присутствии особых соединений — хемоаттрактангов. К хемоаттрактантам относят продукты распада соединительной ткани, иммуноглобулинов, фрагменты активных компонентов комплемента, некоторые факторы свертывания крови и фибринолиза, простагландины, лейкотриены, лимфокины и монокины. Благодаря хемотаксису, фагоцит целенаправленно движется в сторону повреждающего агента. Чем выше концентрация хемоаттрактанта, тем большее число фагоцитов устремляется в зону повреждения и тем с большей скоростью они движутся. Для взаимодействия с хемоаттрактантом у фагоцита имеются специфические гликопротеиновые образования — рецепторы. Движение фагоцитов осуществляется в результате взаимодействия актина и миозина и сопровождается выдвижением псевдоподий, которые служат точкой опоры при перемещении фагоцита. Прикрепляясь к субстрату, псевдоподия перетягивает фагоцит на новое место. Двигаясь таким образом, лейкоцит проходит через эндотелий капилляра; прилипая к сосудистой стенке, он выпускает псевдоподию, которая пронизывает стенку сосуда. В этот выступ постепенно «переливается» тело лейкоцита. После этого лейкоцит отделяется от стенки сосуда и может передвигаться в тканях. Контакт фагоцита с фагоцитируемым объектом может быть обусловлен разностью электрических зарядов, повышенной степенью гадрофобности или гидрофильностью лиганда, наличием на его поверхности лектинов, способных специфически связываться с мембранной манозой или инсулином макрофага. В большинстве случаев контакт опосредуется особыми соединениями — опсонинами, значительно усиливающими фагоцитоз. К последним относятся иммунные комплексы, некоторые фрагменты системы комплемента, С-реактивный белок, агрегированные белки, фибронектины и др. Наиболее детально опосредованный фагоцитоз изучен с участием гликопротеина фибронектина (молекулярная масса 440 000), обладающего значительной клейкостью, что облегчает взаимодействие фагоцита и лиганда. Фибронектин находится в нерастворимой форме в соединительной ткани и в растворимой — в глобулиновой фракции плазмы. Кроме того, во взаимодействии фагоцита и фагоцитируемого объекта принимают участие близкий по строению к фибронектину белок ламинин, а также ионы Са+ и Mg+. Эта реакция обеспечивается наличием на мембране фагоцитов специфических рецепторов.

Как только лиганд взаимодействует с рецептором, наступает конформация последнего и сигнал передается на фермент, связанный с рецептором в единый комплекс, благодаря чему осуществляется поглощение фагоцитируемого объекта. Существует несколько механизмов поглощения, но все они сводятся к тому, что лиганд оказывается заключенным в мембрану фагоцита. Образующаяся при этом фагосома передвигается к центру клетки, где сливается с лизосомами, в результате чего появляется фаголизосома. В последней фагоцитируемый объект может погибнуть. Это так называемый завершенный фагоцитоз. Но нередко встречается незавершенный фагоцитоз, когда фагоцитируемый объект может жить и развиваться в фагоците. Подобное явление наблюдается при некоторых инфекционных заболеваниях — туберкулезе, гонорее, менингококковой и вирусной инфекциях. Последняя стадия фагоцитоза — уничтожение лиганда. Основным «оружием» фагоцитов являются продукты частичного восстановления кислорода — пероксид водорода, и свободные радикалы. Они вызывают пероксидное окисление липидов, белков и нуклеиновых кислот, благодаря чему повреждается мембрана клетки. В момент контакта рецепторов с фагоцитируемым объектом наступает активация оксидаз — мембранных ферментов, переносящих электроны на кислород и отнимающих их у восстановленных молекул. При образовании фаголизосомы происходит резкое усиление окислительных процессов внутри нее, в результате чего наступает гибель бактерий. В процессе фагоцитоза утилизируемый клетками кислород превращается в супероксидный анион-радикал (02). В результате окисления НАДФ-Н2 усиленно генерируется пероксид водорода, которому присуще сильное окислительное действие. Фагоциты обладают универсальным свойством высвобождать супероксидные радикалы, прежде всего 02 •

На фагоцитируемый объект, заключенный в фагосому или фаголизосому, по системе микротрубочек изливаются содержимое гранул, а также образовавшиеся метаболиты. В частности, миелопероксидаза нейтрофилов, окисляя мембранные белки, способна инактивировать грамположительные и грамотрицательные бактерии, вирусы, грибки, микоплазмы при обязательном участии галогенов (анионов С1~) и пероксида водорода (H202). В уничтожении бактерий внутри фагоцита принимает участие фермент лизоцим (мурамидаза), вызывающий гидролиз гликопротеидов оболочки. В гранулоцитах содержится уникальная субстанция — фагоцитин, обладающая антибактериальным действием и способная уничтожить грамотри-цательную и грамположительную микрофлору. К другим механизмам, приводящим к гибели фагоцитируемого объекта, относятся действие катионных белков, меняющих поверхностные свойства мембраны; влияние лактоферрина, конкурирующего за ионы железа; действие различных амилолитических, протеолитических и липолитических ферментов, содержащихся в гранулах фагоцитов и разрушающих мембрану бактерий и вирусов.

Система комплемента. Комплемент — ферментная система, состоящая более чем из 20 белков, играющая важную роль в осуществлении защитных реакций, течении воспаления и разрушения (лизиса) мембран бактерий и различных клеток. При активации системы комплемента усиливается разрушение чужеродных и старых клеток, активируются фагоцитоз и течение иммунных реакций, повышается проницаемость сосудистой стенки, ускоряется свертывание крови, что в конечном итоге приводит к более быстрой ликвидации патологического процесса.

Иммунитет. Это комплекс реакций, направленных на поддержание гомеостаза при встрече организма с агентами, которые расцениваются как чужеродные независимо от того, образуются ли они в самом организме или поступают в него извне. Чужеродные для данного организма соединения, способные вызывать иммунный ответ, получили наименование «антигены» Теоретически любая молекула может быть антигеном (АГ). В результате действия АГ в организме образуются антитела (AT), сенсибилизируются (активируются) лимфоциты, благодаря чему они приобретают способность принимать участие в иммунном ответе. Специфичность АГ заключается в том, что он избирательно реагирует с определенными AT или лимфоцитами, появляющимися после попадания АГ в организм. Способность АГ вызывать специфический иммунный ответ обусловлена наличием на его молекуле многочисленных детерминант (эпигонов), к которым специфически, как ключ к замку, подходят активные центры (антидетерминанты) образующихся AT. АГ, взаимодействуя со своими AT, образуют иммунные комплексы (ИК). Как правило, АГ — это молекулы с высокой молекулярной массой; существуют потенциально активные в иммунологическом отношении вещества, величина молекулы которых соответствует одной отдельной антигенной детерминанте. Такие молекулы носят наименование гаптенов. Последние способны вызывать иммунный ответ, только соединяясь с полным АГ, т.е. белком.

Органы, принимающие участие в иммунитете, делят на четыре группы.

1. Центральные — тимус, или вилочковая железа, и, по-видимому, костный мозг.

2. Периферические, или вторичные, — лимфатические узлы, селезенка, система лимфоэпителиальных образований, расположенных в слизистых оболочках различных органов.

3. Забарьерные — ЦНС, семенники, глаза, паренхима тимуса и при беременности — плод.

4. Внутрибарьерные — кожа.

Различают клеточный и гуморальный иммунитет. Клеточный иммунитет направлен на уничтожение чужеродных клеток и тканей и обусловлен действием Т-киллеров. Типичным примером клеточного иммунитета является реакция отторжения чужеродных органов и тканей, в частности кожи, пересаженной от человека человеку.

Гуморальный иммунитет обеспечивается образованием AT и обусловлен в основном функцией В-лимфоцитов.

Иммунный ответ. В иммунном ответе принимают участие иммунокомпетентные клетки, которые могут быть разделены на антигенпрезентирующие (представляющие АГ), регуляторные (регулирующие течение иммунных реакций) и эффекторы иммунного ответа (осуществляющие заключительный этап в борьбе с АГ).

К антигенпрезентирующим клеткам относятся моноциты и макрофаги, эндотелиальные клетки, пигментные клетки кожи (клетки Лангерганса) и др. К регуляторным клеткам относятся Т- и В-хелперы, супрессоры, контрсупрессоры, Т-лимфоциты памяти. Наконец, к эффекторам иммунного ответа принадлежат Т- и В-киллеры и В-лимфоциты, являющиеся в основном антителопродуцентами. Важная роль в иммунном ответе отводится особым цитокинам, получившим наименование интерлейкинов (ИЛ). Из названия видно, что ИЛ обеспечивает взаимосвязь отдельных видов лейкоцитов в иммунном ответе. Они представляют собой малые белковые молекулы с молекулярной массой 15 000—30 000.

ИЛ-1 — соединение, выделяемое при антигенной стимуляции моноцитами, макрофагами и другими антигенпрезентирующими клетками. Его действие в основном направлено на Т-хелперы (ам-плифайеры) и макрофаги-эффекторы. ИЛ-1 стимулирует гепатоциты, в результате этого в крови возрастает концентрация белков, получивших наименование реактантов острой фазы, так как их содержание всегда увеличивается в острую фазу воспаления. К таким белкам относятся фибриноген, С-реактивный белок, щ-антитрипсин и др. Они играют важную роль в репарации тканей, связывают протеолитические ферменты, регулируют клеточный и гуморальный иммунитет.. Кроме того, ИЛ-1 усиливает фагоцитоз, а также ускоряет рост кровеносных сосудов в зонах повреждения.

ИЛ-2 выделяется Т-амплифайерами под воздействием ИЛ-1 и АГ; является стимулятором роста для всех видов Т-лимфоцитов (киллеров, хелперов, супрессоров) и активатором НК-клеток.

ИЛ-3 выделяется стимулированными Т-хелперами, моноцитами и макрофагами. Его действие направлено преимущественно на рост и развитие тучных клеток и базофилов, а также предшественников Т- и В-лимфоцитов.

ИЛ-4 продуцируется в основном стимулированными Т-хелперами и обладает чрезвычайно широким спектром действия, так как способствует росту и дифференцировке В-лимфоцитов, активирует макрофаги, Т-лимфоциты и тучные клетки, индуцирует продукцию иммуноглобулинов отдельных классов.

ИЛ-5 выделяется стимулированными Т-хелперами и является фактором пролиферации и дифференцировки эозинофилов, а также В-лимфоцитов.

ИЛ-6 продуцируется стимулированными моноцитами, макрофагами, эндотелием, Т-хелперами и фибробластами; вместе с ИЛ-4 обеспечивает рост и дифференцировку В-лимфоцитов, способствуя их переходу в антителопродуценты, т. е. плазматические клетки.

ИЛ-7 первоначально выделен из стромальных клеток костного мозга; усиливает рост и пролиферацию Т- и В-лимфоцитов, а также влияет на развитие тимоцитов в тимусе.

ИЛ-8 образуется стимулированными моноцитами и макрофагами. Его назначение сводится к усилению хемотаксиса и фагоцитарной активности нейтрофилов.

ИЛ-9 продуцируется Т-лимфоцитами и тучными клетками. Действие его направлено на усиление роста Т-лимфоцитов. Кроме того, он способствует развитию эритроидных колоний в костном мозге. ИЛ-10 образуется макрофагами и усиливает пролиферацию зрелых и незрелых тимоцитов, а также способствует дифференцировке Т-киллеров.

ИЛ-11 продуцируется стромальными клетками костного мозга. Играет важную роль в гемопоэзе, особенно тромбоцитопоэзе.

ИЛ-12 усиливает цитотоксичность Т-киллеров и НК-лимфоцитов. Иммунный ответ начинается с взаимодействия антигенпрезентирующих клеток с АГ, после чего происходят его фагоцитоз и переработка до продуктов деградации, которые выделяются наружу • оказываются за пределами антигенпрезентирующей клетки.

Специфичность иммунного ответа обеспечивается наличием особых антигенов, получивших у мышей наименование la-белка. У человека его роль выполняют человеческие лейкоцитарные антигены II класса, тип DR (Human Leukocyte Antigens, или HLA).

la-белок находится практически на всех кроветворных клетках, но отсутствует на зрелых Т-лимфоцитах; под влиянием интерлейкинов происходит экспрессия белка и на этих клетках.

Роль la-белка в иммунном ответе сводится к следующему. АГ могут быть распознаны иммунокомпетентными клетками лишь при контакте со специфическими рецепторами, однако количество АГ слишком велико и природа не заготовила для них соответствующего числа рецепторов, вот почему АГ («чужое») может быть узнан лишь в комплексе со «своим», функцию которого и несет la-белок или антигены HLA-DR.

Продукты деградации АГ, покинув макрофаг, частично вступают во взаимодействие с la-белком, образуя с ним комплекс, стимулирующий деятельность антигенпрезентирующей клетки. При этом макрофаг начинает секретировать ряд интерлейкинов. ИЛ-1 действует на Т-амплифайер, в результате чего у последнего появляется рецептор к комплексу la-белок + АГ. Именно эта реакция, как и все последующие, обеспечивает специфичность иммунного ответа.

Активированный Т-амплифайер выделяет ИЛ-2, действующий на различные клоны Т-хелперов и цитотоксические лимфоциты, принимающие участие в клеточном иммунитете. Стимулированные клоны Т-хелперов секретируют ИЛ-3, ИЛ-4, ИЛ-5 и ИЛ-6, оказывающие преимущественное влияние на эффекторное звено иммунного ответа и тем самым способствующие переходу В-лимфоцитов в антителопродуценты. Благодаря этому образуются AT, или иммуноглобулины. Другие интерлейкины (ИЛ-7, ИЛ-9, ИЛ-10, ИЛ-12) влияют преимущественно на рост и дифференцировку Т- и В-лимфоцитов и являются факторами надежности, обеспечивающими иммунный ответ.

Клеточный иммунитет зависит от действия гуморальных факторов, выделяемых цитотоксическими лимфоцитами (Т-киллерами). Эти соединения получили наименование «перфорины» и «цитолизины».

Установлено, что каждый Т-эффектор способен лизировать несколько чужеродных клеток-мишеней. Этот процесс осуществляется в три стадии: 1) распознавание и контакт с клетками-мишенями; 2) летальный удар; 3) лизис клетки-мишени. Последняя стадия не требует присутствия Т-эффектора, так как осуществляется под влиянием перфоринов и цитолизинов. В стадию летального удара перфорины и цитолизины действуют на мембрану клетки-мишени и образуют в ней поры, через которые проникает вода, разрывающая клетки.

Среди гуморальных факторов, выделяемых в процессе иммунного ответа, следует указать на фактор некроза опухолей (ФНО) и интерфероны.

Действие интерферонов неспецифично, так как они обладают различными функциями — стимулируют деятельность НК-клеток и макрофагов, влияют непосредственно на ДНК - и РНК-содержащие вирусы, подавляя их рост и активность, задерживают рост и разрушают злокачественные клетки, возможно, за счет усиления продукции ФНО.

Гуморальный иммунный ответ обеспечивается АТ,или иммуноглобулинами. У человека различают пять основных классов иммуноглобулинов: lgA, lgG, lgM, lgE, lgD. Все они имеют как общие, так и специфические детерминанты.

Иммуноглобулины класса G. У человека являются наиболее важными. Концентрация lgG в крови достигает 9-18 г/л. Иммуноглобулины класса G обеспечивают противоинфекционную защиту, связывают токсины, усиливают фагоцитарную активность, активируют систему комплемента, вызывают агглютинацию бактерий и вирусов, они способны переходить через плаценту, обеспечивая новорожденному ребенку так называемый пассивный иммунитет. Это означает, что если мать перенесла «детские инфекции» (корь, коклюш, скарлатина и др.), то новорожденный ребенок в течение 3-6 мес. к этим заболеваниям невосприимчив, так как содержит к возбудителям данных инфекций материнские AT.

Иммуноглобулины класса А. Делят на две разновидности: сывороточные и секреторные. Первые из них находятся в крови, вторые — в различных секретах. Соответственно этому сывороточный lgA принимает участие в общем иммунитете, а секреторный lgA обеспечивает местный иммунитет, создавая барьер на пути проникновения инфекций и токсинов в организм.

Секреторный lgA находится в наружных секретах — в слюне, слизи трахеобронхиального дерева, мочеполовых путей, молоке, молозиве. Молекулы lgA, присутствующие во внутренних секретах и жидкостях (синовиальная, амниотическая, плевральная, цереброспинальная и др.), существенно отличаются от молекул lgA, присутствующего в наружных секретах. Секреторный компонент, по всей видимости, образуется в эпителиальных клетках и в дальнейшем присоединяется к молекуле lgA.

lgA нейтрализуют токсины и вызывают агглютинацию микроорганизмов и вирусов. Концентрация сывороточных lgA колеблется от 1,5 до 4,0 г/л. Содержание lgA резко возрастает при заболеваниях верхних дыхательных путей, пневмониях, инфекционных заболеваниях желудочно-кишечного тракта и др.

Иммуноглобулины класса lgE. Принимают участие в нейтрализации токсинов, опсонизации, агглютинации и бактериолизисе, осуществляемом комплементом. К этому классу также относятся некоторые природные AT, например к чужеродным (не свойстенным человеку) эритроцитам. Содержание lgE повышается при инфекционных заболеваниях у взрослых и детей.

Иммуноглобулины класса lgD. Обладают свойством фиксироваться на базофилах и тучных клетках и вызывать в случае образования иммунных комплексов их дегрануляцию. Содержание увеличивается при так называемых аллергических заболеваниях — бронхиальной астме, вазомоторном рините, гельминтозах, аллергических дерматитах и др.

Иммуноглобулины класса lgD. Представляют собой антитела, локализующиеся в мембране плазматических клеток, в сыворотке концентрация их невелика. Значение lgD не выяснено. Предполагают, что lgD принимает участие в аутоиммунных процессах.

Регуляция иммунитета. Интенсивность иммунного ответа во многом определяется состоянием нервной и эндокринной систем. Установлено, что раздражение различных подкорковых структур (таламус, гипоталамус, серый бугор) может сопровождаться как усилением, так и торможением иммунной реакции на введение антигенов. Показано, что возбуждение симпатического отдела нервной системы, как и введение адреналина, усиливает фагоцитоз и интенсивность иммунного ответа. Повышение тонуса парасимпатического отдела вегетативной нервной системы приводит к противоположным реакциям.

Стресс, а также депрессии угнетают иммунитет, что сопровождается не только повышенной восприимчивостью к различным заболеваниям, но и создает благоприятные условия для развития злокачественных новообразований.

За последние годы установлено, что гипофиз и эпифиз с помощью особых пептидных биорегуляторов, получивших наименование «цитомедины», контролируют деятельность тимуса. Передняя доля гипофиза является регулятором преимущественно клеточного, а задняя — гуморального иммунитета.

Иммунная регуляторная система. В последнее время высказано предположение, что существуют не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная). Имму-нокомпетентные клетки способны вмешиваться в морфогенез, а также регулировать течение физиологических функций. Не подлежит сомнению, что Т-лимфоциты играют чрезвычайно важную роль в регенерации тканей. Многочисленные исследования показывают, что Т-лимфоциты и макрофаги осуществляют «хелперную» и «супрессорную» функции в отношении эритропоэза и лейкопоэза. Лимфокины и монокины, выделяемые лимфоцитами, моноцитами и макрофагами, способны изменять деятельность центральной нервной системы, сердечнососудистой системы, органов дыхания и пищеварения, регулировать сократительные функции гладкой и попереч-нополосатой мускулатуры.

Особенно важная роль в регуляции физиологических функций принадлежит интерлейкинам, которые являются «семьей молекул на все случаи жизни», так как вмешиваются во все физиологические процессы, протекающие в организме.

Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител, связывающих активные ферменты, факторы свертывания крови и избыток гормонов.

Иммунологическая регуляция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая регуляция носит прицельный характер и тем самым напоминает нервную. Лимфоциты и моноциты, а также другие клетки, принимающие участие в иммунном ответе, отдают гуморальный посредник непосредственно органу-мишени. Отсюда предложение назвать иммунологическую регуляцию клеточно-гуморальной. Основную роль в ней следует отвести различным популяциям Т-лимфоцитов, осуществляющих «хелперные» и «супрессорные» функции по отношению к различным физиологическим процессам.

Учет регуляторных функций иммунной системы позволяет врачам различных специальностей по-новому подойти к решению многих проблем клинической медицины.

Тромбоциты

Тромбоциты, или кровяные пластинки, образуются из гигантских клеток красного костного мозга — мегакариоцитов. В костном мозге мегакариоциты плотно прижаты к промежуткам между фибробластами и эндотелиальными клетками, через которые их цитоплазма выдается наружу и служит материалом для образования тромбоцитов. В кровотоке тромбоциты имеют круглую или слегка овальную форму, диаметр их не превышает 2-3 мкм. У тромбоцита нет ядра, но имеется большое количество гранул (до 200) различного строения. При соприкосновении с поверхностью, отличающейся по своим свойствам от эндотелия, тромбоцит активируется, распластывается и у него появляется до 10 зазубрин и отростков, которые могут в 5-10 раз превышать диаметр тромбоцита. Наличие этих отростков важно для остановки кровотечения.

В норме число тромбоцитов у здорового человека составляет 24 ·10È/л, или 200-400 тыс. в 1 мкл. Увеличение числа тромбоцитов носит наименование «тромбоцитоз», уменьшение — «тромбоцитопения». В естественных условиях число тромбоцитов подвержено значительным колебаниям (количество их возрастает при болевом раздражении, физической нагрузке, стрессе), но редко выходит за пределы нормы. Как правило, тромбоцитопения является признаком патологии и наблюдается при лучевой болезни, врожденных и приобретенных заболеваниях системы крови.

Основное назначение тромбоцитов — участие в процессе гемостаза. Важная роль в этой реакции принадлежит так называемым тромбоцитарным факторам, которые сосредоточены главным образом в гранулах и мембране тромбоцитов. Часть из них обозначают буквой Р (от слова platelet — пластинка) и арабской цифрой (P¹, P² и т.д.). Наиболее важными являются Р³, или частичный (неполный) тромбопластин, представляющий осколок клеточной мембраны; Р4, или антигепариновый фактор; Р5, или фибриноген тромбоцитов; АДФ; контрактильный белок тромбастенин (напоминающий актомиозин), вазоконстрикторные факторы — серотонин, адреналин, норадреналин и др. Значительная роль в гемостазе отводится тромбоксану A.² (ТхА²), который синтезируется из арахидоновой кислоты, входящей в состав клеточных мембран (в том числе и тромбоцитов) под влиянием фермента тромбоксансинтетазы.

На поверхности тромбоцитов находятся гликопротеиновые образования, выполняющие функции рецепторов. Часть из них «замаскирована» и экспрессируется после активации тромбоцита стимулирующими агентами — АДФ, адреналином, коллагеном, микро-фибриллами и др.

Тромбоциты принимают участие в защите организма от чужеродных агентов. Они обладают фагоцитарной активностью, содержат lgG, являются источником лизоцима и b-лизинов, способных разрушать мембрану некоторых бактерий. Кроме того, в их составе обнаружены пептидные факторы, вызывающие превращение «нулевых» лимфоцитов (0-лимфоциты) в Т- и В-лимфоциты. Эти соединения в процессе активации тромбоцитов выделяются в кровь и при травме сосудов защищают организм от попадания болезнетворных микроорганизмов.

Регуляторами тромбоцитопоэза являются тромбоцитопоэтины кратковременного и длительного действия. Они образуются в костном мозге, селезенке, печени, а также входят в состав мега-кариоцитов и тромбоцитов. Тромбоцитопоэтины кратковременного действия усиливают отшнуровку кровяных пластинок от мегакариоцитов и ускоряют их поступление в кровь; тромбоцитопоэтины длительного действия способствуют переходу предшественников гигантских клеток костного мозга в зрелые мегакариоциты. На активность тромбоцитопоэтинов непосредственное влияние оказывают ИЛ-6 и ИЛ-11.

ГРУППЫ КРОВИ

Система АВО

Учение о группах крови возникло из потребностей клинической медицины. Переливая кровь от животных человеку или от человека человеку, врачи нередко наблюдали тяжелейшие осложнения, иногда заканчивавшиеся гибелью реципиента.

С открытием венским врачом К.Ландштейнером (1901) групп крови стало понятно, почему в одних случаях трансфузии крови проходят успешно, а в других заканчиваются трагически для больного. К.Ландштейнер впервые обнаружил, что плазма, или сыворотка, одних людей способна агглютинировать (склеивать) эритроциты других людей. Это явление получило наименование изогемагглютинации. В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами и обозначаемых буквами А и В, а в плазме — природных антител, или агглютининов, именуемых a и b. Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и α, В и β.

Установлено, что агглютинины, являясь природными антителами (AT), имеют два центра связывания, а потому одна молекула агглютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (агглютинат) эритроцитов.

В крови одного и того же человека не может быть одноименных агглютиногенов и агглютининов, так как в противном случае происходило бы массовое склеивание эритроцитов, что несовместимо с жизнью. Возможны только четыре комбинации, при которых не встречаются одноименные агглютиногены и агглютинины, или четыре группы крови: I — 0 (αβ), II — A (β), III — B (α), IV — АВ (0).

Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины, их также два вида и они обозначаются, как и агглютинины, буквами α и β. При встрече одноименных агглютиногена и гемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температуре 37-40°С. Вот почему при переливании несовместимой крови у человека уже через 30-40 с наступает гемолиз эритроцитов. При комнатной температуре, если встречаются одноименные аглютиногены и агглютинины, происходит агглютинация, но не наблюдается гемолиза.

В плазме людей с II, III, IV группами крови имеются антиагглютиногены, покинувшие эритроцит и ткани. Обозначаются они, как и агглютиногены, буквами А и В

Серологический состав основных групп крови (система АВО)

Группа крови Эритроциты Плазма, плазма или сыворотка
агглютиногены гемоагагглютинины и гемолизины антиагглютинины
I (0)   α, β  
II (А) А β А
III (В) В α В
IV (АВ) АВ   АВ

Как видно из приводимой таблицы, I группа крови не имеет агглютиногенов, а потому по международной классификации обозначается как группа 0, II — носит наименование A, III — В, IV — АВ.

Для решения вопроса о совместимости групп крови пользуются следующим правилом: среда реципиента должна быть пригодна для жизни эритроцитов донора (человек, который отдает кровь). Такой средой является плазма, следовательно, у реципиента должны учитываться агглютинины и гемолизины, находящиеся в плазме, а у донора — агглютиногены, содержащиеся в эритроцитах. Для решения вопроса о совместимости групп крови смешивают исследуемую кровь с сывороткой, полученной от людей с различными группами крови. Агглютинация происходит в случае смешивания сыворотки I группы с эритроцитами II, III и IV групп, сыворотки II группы — с эритроцитами III и IV групп, сыворотки III группы — с эритроцитами 11 и IV групп.

Следовательно, кровь I группы совместима со всеми другими группами крови, поэтому человек, имеющий I группу крови, называется универсальным донором. С другой стороны, эритроциты

IV группы крови не должны давать реакции агглютинации при смешивании с плазмой (сывороткой) людей с любой группой крови, поэтому люди с IV группой крови называются универсальными реципиентами.

Почему же при решении вопроса о совместимости не принимают в расчет агглютинины и гемолизины донора? Это объясняется тем, что агглютинины и гемолизины при переливании небольших доз крови (200-300 мл) разводятся в большом объеме плазмы (2500-2800 мл) реципиента и связываются его антиагглютининами, а потому не должны представлять опасности для эритроцитов.

В повседневной практике для решения вопроса о группе переливаемой крови пользуются иным правилом: переливаться должны одногруппная кровь и только по жизненным показаниям, когда человек потерял много крови. Лишь в случае отсутствия одногруппной крови с большой осторожностью можно перелить небольшое количество иногруппной совместимой крови. Объясняется это тем, что приблизительно у 10-20% людей имеется высокая концентрация очень активных агглютининов и гемолизинов, которые не могут быть связаны антиагглютининами даже в случае переливания небольшого количества иногруппной крови.

Постгрансфузионные осложнения иногда возникают из-за ошибок при определении групп крови. Установлено, что агглютиногены А и В существуют в разных вариантах, различающихся по своему строению и антигенной активности. Большинство из них получило цифровое обозначение (A1, А2, А3 и т.д., B1, В2 и т.д.). Чем больше порядковый номер агглютиногена, тем меньшую активность он проявляет. И хотя разновидности агглютиногенов А и В встречаются относительно редко, при определении групп крови они могут быть не обнаружены, что может привести к переливанию несовместимой крови.

Следует также учитывать, что большинство человеческих эритроцитов несет антиген Н. Этот АГ всегда находится на поверхности клеточных мембран у лиц с группой крови 0, а также присутствует в качестве скрытой детерминанты на клетках людей с группами крови А, В и АВ. Н — антиген, из которого образуются антигены А и В. У лиц с 1 группой крови антиген доступен действию анти-Н-антител, которые довольно часто встречаются у людей со II и IV группами крови и относительно редко у лиц с III группой. Это обстоятельство может послужить причиной гемотрансфузионных осложнений при переливании крови 1 группы людям с другими группами крови.

Концентрация агглютиногенов на поверхности мембраны эритроцитов чрезвычайно велика. Так, один эритроцит группы крови A1 содержит в среднем 900000-1700000 антигенных детерминант, или рецепторов, к одноименным агглютининам. С увеличением порядкового номepa агглютиногена число таких детерминант уменьшается. Эритроцит группы А² имеет всего 250000-260000 антигенных детерминант, что также объясняет меньшую активность этого агглютиногена.

В настоящее время система АВО часто обозначается как АВН, а вместо терминов «агглютиногены» и «агглютинины» применяются термины «антигены» и «антитела» (например, АВН-антигены и АВН-антитела).







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.