Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Осевые моменты инерции некоторых тел





Осевой момент инерции

Моментом инерции механической системы относительно неподвижной оси a («осевой момент инерции»)называется физическая величина Ja, равная сумме произведений масс всех n материальных точек системына квадраты их расстояний до оси:

,

где:

  • mi — масса i -й точки,
  • ri — расстояние от i -й точки до оси.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.

,

где:

  • dm = ρ dV — масса малого элемента объёма тела dV,
  • ρ — плотность,
  • r — расстояние от элемента dV до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

Теорема Гюйгенса-Штейнера

Основная статья: Теорема Штейнера

Момент инерции данного тела относительно какой-либо оси зависит не только от массы, формы и размеровтела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этоготела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, ипроизведения массы тела m на квадрат расстояния d между осями:

Если — момент инерции тела относительно оси, проходящей через центр масс тела, то момент инерцииотносительно параллельной оси, расположенной на расстоянии от неё, равен

,

где — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей
Тело Положение оси a Моментинерции Ja
Полый тонкостенный цилиндр (кольцо)радиуса R и массы m Ось цилиндра
Сплошной цилиндр (диск) радиуса R имассы m Ось цилиндра
Шар радиуса R и массы m Ось проходит через центр шара
Тонкостенная сфера радиуса R и массы m Ось проходит через центр сферы
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходитчерез его середину
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходитчерез его конец

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системыкоординат называются следующие величины:

где x, y и z — координаты малого элемента тела объёмом dV, плотностью ρ и массой dm.

Ось OX называется главной осью инерции тела, если центробежные моменты инерции Jxy и Jxz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти осивзаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции,проведённых в произвольной точке O тела, называются главными моментами инерции тела.

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осямиинерции тела, а моменты инерции относительно этих осей — его главными центральными моментамиинерции. Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции.

Геометрический момент инерции

Геометрический момент инерции — геометрическая характеристика сечения, пропорциональная площадисечения и квадратно пропорциональная расстоянию до этого сечения. Геометрический момент инерции несвязан с движением материала, он лишь отражает степень жесткости и взаимного расположения различныхэлементов конструкции.

Геометрический момент инерции двух стержней диаметром d на расстоянии L:

J = 2 dL 2

Центральный момент инерции

Центральный момент инерции (или момент инерции относительно точки O) — это величина

,

где:

  • — масса малого элемента объёма тела dV,
  • — плотность,
  • — расстояние от элемента dV до точки O.

Центральный момент инерции можно выразить через главные осевые или центробежные моменты инерции: .

Рис. 5.1

 

В более сложных случаях, когда к валу приложено несколько внешних моментов, крутящие моменты M k в поперечных сечениях различных участков вала неодинаковы.

На основании метода сечений крутящий момент в произвольном поперечном сечении вала численно равен алгебраической сумме внешних скручивающих моментов, приложенных к валу по одну сторону от рассматриваемого сечения.

При расчетах на прочность и жесткость знак крутящего момента не имеет никакого значения, но для удобства построения эп. M k примем следующее правило знаков: крутящий момент считается положительным, если при взгляде в торец отсеченной части вала действующий на него момент представляется направленным по ходу часовой стрелки (рис.5.2).

В технике употребляется терминология «винт с правой нарезкой» или «…с левой нарезкой…», причем правый винт наиболее распространен, являясь стандартом. Полезно заметить, что при навинчивании гайки на правый винт мы прикладываем положительный момент Mкр , а при свинчивании гайки – отрицательный.

Рис. 5.2

 

При наличии распределенной моментной нагрузки m (рис.5.3) крутящие моменты МК связаны дифференциальной зависимостью

из которой вытекает следующая формула:

где – крутящий момент в начале участка.

Согласно формуле (5.2) на участках с равномерно распределенной нагрузкой m крутящий момент изменяется по линейному закону. При отсутствии погонной нагрузки (m = 0) крутящий момент сохраняет постоянное значение (МК = МКо = const). В сечениях, где к валу приложены сосредоточенные скручивающие моменты, на эпюре МК возникают скачки, направленные вверх, если моменты направлены против часовой стрелки, либо вниз – при обратном направлении моментов.

Рис. 5.3

 

На рис. 5.4, а изображен стержень, жестко защемленный в правом концевом сечении, к которому приложены три внешних скручивающих момента.

Рис. 5.4

 

В нашем случае крутящие моменты в их поперечных сечениях удобно выражать через внешние моменты, приложенные со стороны свободного конца бруса.

Это позволяет определять крутящие моменты, не вычисляя реактивного момента, возникающего в заделке.

Крутящий момент M z1 в сечении I численно равен M 1=200 нм и, согласно принятому правилу знаков, положителен.

Крутящий момент M z2 в сечении II численно равен алгебраической сумме моментов M 1 и M 1, т.е. M z2 =200-300=-100 нм, а его знак зависит от соотношения этих моментов.

Аналогичным образом вычисляется крутящий момент M z3 в сечении III: M z3 =200-300+500=400 нм.

Изменение крутящих моментов по длине вала покажем с помощью эпюры крутящих моментов. На рис. 5.4, б показана такая эпюра для стержня, изображенного на рис. 5.4, а.

Каждая ордината эп. M k в принятом масштабе равна величине крутящего момента, действующего в том поперечном сечении бруса, которому соответствует эта ордината.

В сечении, в котором к брусу приложен внешний скручивающий момент, ордината эпюры изменяется скачкообразно на величину, равную значению этого момента.

Следует учитывать, что наибольший внешний скручивающий момент, приложенный к брусу, не всегда равен наибольшему крутящему моменту, по которому ведется расчет бруса на прочность и жесткость.

 

Пример 1.

Построить эпюру крутящих моментов для жестко защемленного стержня (рис.5.4.1, а).

Рис.5.4.1

 

Решение.

Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил.

1. Намечаем характерные сечения.

2. Определяем крутящий момент в каждом характерном сечении.

3. По найденным значениям строим эпюру (рис.5.4.1, б).

 

Пример 2.

Рассмотрим расчетную схему ва­ла, нагруженного двумя сосредоточенными моментами М и 2 М и распределенными по длине: т (рис. 5.4.2).

Рис. 5.4.2. Построение эпюры внутренних крутящих моментов:

а – расчетная схема; б – первый участок, левая часть; в – второй участок, левая часть;

г – третий участок, правая часть; д – эпюра внутренних крутящих моментов

 

Решение.

В исходных сечениях 1–1; 2–2; 3–3 задаются положительными зна­чениями внутренних крутящих мо­ментов М 1, М 2, М 3. Пусть .

Для первого участка (рис. 5.4.2, б):

Σ Mk = M 1 + M = 0;

M 1 = – M = ml = const.

Для второго участка (рис. 5.4.2, в):

Для третьего участка (рис. 5.4.2, г):

Границы измерения параметра х 3 в следующей системе координат:

Тогда

Отмеченные значения ординат откладываются на эпюре внутренних крутящих моментов (рис. 5.4.2, д).

 

Пример 3.

На рис. 5.4.3 дан пример определения по методу сечений внутренних крутящих моментов по участкам и внизу (ри.5.4.3, с) изображена суммарная эпюра М кр.

Рис.5.4.3. a) заданный стержень с нагрузкой; b) отсеченные части стержня;

с) эпюра крутящих моментов.

 

Решение.

В данном случае для консольного стержня вести вычисления удобно, идя справа налево, начав их с 3–го участка.

Участок 3 (рис. 5.4.3, b). Неизвестный момент M кр3 прикладываем к отсеченной части как положительный, после чего пишем условие равновесия отсеченной части:

Σотсеч mz3= M кр3 +5=0; → M кр3 = -5 тм, (0≤z3 ≤2).

Участок 2 (рис. 5.4.3, b). Положение сечения фиксируем с помощью местной координаты z2:

Σотсеч mz2= M кр2 +3(4-z2) -15 +5=0; → M кр2 =10 – 3(4-z2), (0≤z2≤2).

Точка z2 =0, M кр2 =10 – 12= -2 тм.

Точка z2 =4, M кр2 =10 – 0= 10 тм.

Участок 1 (рис. 5.4.3, b):

Σотсеч mz1= M кр1 +3∙4+5+5-15=0; → M кр1 = -7 тм, (0≤z1 ≤2).

Найдем реактивный момент в заделке M 0 из условия равновесия всего стержня Σmz =0, это дает M 0 +3∙4+5+5-15=0 и M0 = -7 тм, что совпадает с M кр1, найденным на участке 1 по методу сечений. Этого конечно следовало ожидать, так как по существу реактивный момент – это внутреннее усилие, действующее в поперечном сечении, где соединены торец стержня и заделка.

 

Рис.5.5

 

Для того чтобы проинтегрировать это выражение необходимо знать закон распределения напряжений в сечении. Выделим из вала элементарное кольцо длиной dz и толщиной (рис.5.6).

Правый торец элемента повернется относительно левого на угол , образующая СВ повернется на угол и займет положение СВ 1. Угол - относительный сдвиг. Из треугольника ОВВ 1 найдем:

Рис.5.6 Рис.5.7

 

Из треугольника СВВ 1: . Откуда, приравнивая правые части, получим

На основании закона Гука при сдвиге:

Подставим выражение (5.2) в (5.1):

Откуда

Подставим значение в выражение (5.4) получим:

Таким образом, касательные напряжения при кручении прямо пропорциональны расстоянию от центра тяжести сечения до рассматриваемой точки и одинаковы в точках, одинаково удаленных от центра тяжести сечения (рис. 5.7). При получим . Наибольшие напряжения возникают в точках контура сечения при :

Величина отношения полярного момента инерции к радиусу вала называется моментом сопротивления сеченияпри кручении или полярным моментом сопротивления

Для сплошного круглого сечения

Для кольцевого сечения

где

 

Тогда максимальные касательные напряжения равны

 

Рис.5.8 Рис.5.9

 

Таким образом, характер разрушения зависит от способности материала вала сопротивляться воздействию нормальных и касательных напряжений. В соответствии с этим, допускаемые касательные напряжения принимаются равным - для хрупких материалов и - для пластичных материалов.

 

Пример 4.

Подобрать диаметр сплошного вала, передающего мощность N =450 л.с. при частоте вращения n =300 об/мин. Угол закручивания не должен превышать одного градуса на 2 метра длины вала; МПа, МПа.

Решение.

Крутящий момент определяем из уравнения

Диаметр вала по условию прочности определяется из уравнения

Диаметр вала по условию жесткости определяется из уравнения

Выбираем больший размер 0,112 м.

 

Пример 5.

Имеются два равнопрочных вала из одного материала, одинаковой длины, передающих одинаковый крутящий момент; один из них сплошной, а другой полый с коэффициентом полости . Во сколько раз сплошной вал тяжелее полого?

Решение.

Равнопрочными валами из одинакового материала считаются такие валы, у которых при одинаковых крутящих моментах, возникают одинаковые максимальные касательные напряжения, то есть

Условие равной прочности переходит в условие равенства моментов сопротивления:

Откуда получаем:

Отношение весов двух валов равно отношению площадей их поперечных сечений:

Подставляя в это уравнение отношение диаметров из условия равной прочности, получим

Как показывает этот результат, полый вал, будучи одинаковым по прочности, вдвое легче сплошного. Это объясняется тем, что в силу линейного закона распределения касательных напряжений по радиусу вала, внутренние слои относительно мало нагружены.

 

Пример 6.

Найти мощность в квт, передаваемую валом, если диаметр сплошного вала d=0,15 м, число оборотов вала в минуту n=120, модуль сдвига и угол закручивания участка вала длиной 7,5 м равен 1/15 ра­диан.

Решение.

Из формулы

Определим передаваемую мощность

Пример 7.

Определить, на сколько процентов увеличится на­ибольшее напряжение вала при кручении, если в валу сделано центральное отверстие (С=0,4).

Решение.

Полагая , полу­чим следующие выражения для напряжений сплошного и полого валов:

Искомая разница в напряжениях

Пример 8.

Заменить сплошной вал диаметра d =300 мм по­лым равнопрочным валом с наружным диаметром =350 мм. Найти внутренний диаметр полого вала и сравнить веса этих валов.

Решение.

Наибольшие касательные напряжения в обоих валах должны быть равными между собой:

Отсюда определим коэффициент С

Внутренний диаметр полого вала

Отношение весов равно отношению площадей поперечных сечений:

Из приведенных примеров 5 и 6 видно, что изготовление пусто­телых валов, т.е. валов, у которых малонагруженная внутренняя часть удаляется, является весьма эффективным средством сниже­ния затраты материала, а следовательно, и облегчения веса валов. При этом наибольшие напряжения, возникающие в пустотелом валу, мало отличаются от максимальных напряжений в валу сплошного сечения при том же наружном диаметре.

Так в примере 5 за счет сверления при , да­ющем облегчение вала на 16%, максимальные напряжения в наруж­ных волокнах полого вала возросли всего на 2,6%. В примере 6 равнопрочный пустотелый вал, но с несколько большим наружным диаметром по сравнению со сплошным валом, оказался легче сплошного на 53,4%. Эти примеры наглядно свидетельствуют о рацио­нальности применения пустотелых валов, что широко используется внекоторых областях современного машиностроения, в частности, в моторостроении.

Пример 9.

На участке сплошного круглого вала D =10 см действует крутящий момент Т =8 кHм. Проверить прочность и жёсткость вала, если τ adm=50 МПа, К t adm=0,5 град/м и модуль сдвига G =0,8∙105 МПа.

Решение.

Условие безопасной прочности

Выразив K t в размерности град/м, получим

что превышает величину допускаемого относительного угла закручивания Kt adm=0,5 град/м на 16%.

Следовательно – прочность вала обеспечена τмax=40,75 МПа < 50 МПа, а жёсткость не обеспечена.

Пример 10.

Стальной вал кольцевого сечения D =10 см, d =8 см нагружен моментом, вызвавшим τмахadm=70 МПа. Что произойдёт, если этот вал заменить сплошным круглым валом диаметром 8 см (материал сохранён).

Решение.

Максимальные касательные напряжения в вале

Для кольцевого сечения а для вала сплошного сечения . По условию для вала кольцевого сечения τ мах=70 МПа, очевидно, что для вала сплошного сечения максимальные напряжения будут больше во столько раз, во сколько его момент сопротивления меньше.

Пример 11.

Для сплошного вала (пример 10) определить появились ли пластические деформации, если известно, что nadm=1,8?

Решение.

Для пластичных материалов n admmaxadm, следовательно τу =70∙1,8=126 Мпа.

Действующие напряжения превысили предел текучести, следовательно появились пластические деформации.

Пример 12.

К стальному валу (см.рис.5.10) приложены скручивающие моменты: М1, M2, M3, M4. Требуется:

1) построить эпюру крутящих моментов;

2) при заданном значении определить диаметр вала из расчета на прочность и округлить его величину до ближайшей большей, соответственно равной: 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 мм;

3) построить эпюру углов закручивания;

4) найти наибольший относительный угол закручивания.

Дано: М 1 = М 3 = 2 кНм, М 2 = М 4 = 1,6 кНм, а = b = с = 1,2 м, = 80 МПа.

Рис.5.10

 

Решение.

1. Построить эпюру крутящих моментов.

При построений эпюр М кр примем следующее правило знаков: крутящий момент считается положительным, если при взгляде в торец отсеченной части бруса действующий на него момент представляется направленным по движению часовой стрелки.

Крутящие моменты, возникающие в поперечных сечениях брусьев, определяются по внешним окручивающим моментам с помощью метода сечений. На основании метода сечения крутящий момент в произвольном поперечном сечении бруса численно равен алгебраической сумме внешних скручивающих моментов, приложенных к брусу по одну сторону от рассматриваемого сечения.

Для брусьев, имеющих один неподвижно закрепленный (заделанный) и один свободный конец, крутящие моменты всех поперечных сечений удобно выражать через внешние моменты, приложенные с той стороны от рассматриваемого сечения, с которой расположен свободный конец. Это позволяет определять крутящие моменты, не вычисляя реактивного момента, возникающего в заделке.

Для построения эпюры крутящих моментов необходимо найти величины крутящих моментов на каждом участке вала.

I участок (КД):

II участок (СД):

III участок (СВ):

IV участок (ВА):

По значению этих моментов строим эпюру М кр в выбранном масштабе. Положительные значения М кр откладываем вверх, отрицательные - вниз от нулевой линии эпюры (см. рис.5.11).

Рис.5.11

 

2. При заданном значении определим диаметр вала из расчета на прочность.

Условие прочности при кручении имеет вид

- максимальный крутящий момент, взятый по абсолютной величине. Определяется из эпюры М кр (рис.5.11).

кНм;

- полярный момент сопротивления для сплошного круглого вала.

Диаметр вала определяется по формуле

Принимаем d = 50 мм = 0,05 м.

3. Построим эпюру углов закручивания.

Угол закручивания участка вала длиной l постоянного поперечного сечения определяется по формуле

где - жесткость сечения вала при кручении.

- полярный момент инерции круглого вала

Вычислим углы закручивания сечений В, С, D и К относительно закрепленного конца вала (сечения А)

Строим эпюру углов закручивания (рис.5.11).

4. Найдем наибольший относительный угол закручивания

 

Пример 13.

Определить напряжения и погонный угол закручивания стальной разрезной трубы (рис.5.12), имеющей диаметр средней линии d =97,5 мм и толщину мм. Крутящий момент – 40 Нм. Модуль сдвига материала трубы МПа. Сравнить полученные напряжения и угол закручивания с напряжением и углом закручивания для сплошной трубы.

Рис.5.12

 

Решение.

Касательные напряжения в разрезной трубе, представляющей собой тонкостенный стержень, определим по формуле

где - развернутая длина осевой линии трубы.

Напряжение в сплошной трубе определяется по формуле

Угол закручивания на метр длины для разрезной трубы определяется по формуле

Погонный угол закручивания для сплошной трубы определяется по формуле

Таким образом, в сплошной трубе по сравнению с разрезанной вдоль образующей при кручении напряжения меньше в 58,3 раза, а угол закручивания – в 1136 раз.

 

Рис. 5.13

 

в точке В

здесь необходимо учесть, что b - малая сторона прямоугольника.

Значения угла закручивания определяется по формуле:

где - момент инерции при кручении, аналог полярного момента инерции поперечного сечения бруса.

Коэффициенты и зависят от отношения сторон h/b, и их значения приведены в табл. 4.1.

 

Таблица 4.1. Значения коэффициентов

для прямоугольных сечений

h/b
1,0 0,208 0,140 1,0
1,2 0,219 0,166 -
1,4 0,228 0,187 0,865
1,6 0,234 0,204 0,845
1,8 0,240 0,217 -
2,0 0,246 0,229 0,796
2,5 0,258 0,249 -
3,0 0,267 0,263 0,753
4,0 0,282 0,281 0,745
6,0 0,299 0,299 0,743
8,0 0,307 0,307 0,743
10,0 0,313 0,313 0,743
Более 10 0,333 0,333 0,743

 

Значения и для различных сечений приведены в табл.4.2.

 

Таблица 4.2. Геометрические характеристики жесткости и прочности для

некоторых сечений при кручении прямого бруса

Форма поперечного сечения Момент инерции при кручении Момент сопротивления при кручении Наибольшие касательные напряжения
Квадрат В серединах сторон В углах
Круг с лыской h/d>0,5 В середине плоского среза
Эллипс h/b>1 В конце малой полуоси большой
Равносторонний треугольник В серединах сторон в углах
Правильный шести- или восьмиугольник (для шестиугольника k=0,133, для восьмиугольника k=0,130) (для шестиугольника , для восьмиугольника ) В серединах сторон в углах
Форма клина В точках длинных сторон ближе к широкому основанию
Полое эллиптическое сечение (m>1); ()   В конце малой полуоси , большой , при малой толщине (равномерно по сечению)
Незамкнутое кольцевое сечение В точках внутреннего и наружного сечения  

 

Пример 14.

Имеются два равнопрочных вала из одного материала, одинаковой длины, передающие одинаковый крутящий момент; один из них круглого поперечного сечения, а другой - квадратного. Во сколько раз квадратный вал тяжелее круглого?

Решение.

Условие равной прочности имеет следующий вид:

где ; значение коэффициента определяется по таблице 4.1 и составляет для квадратного сечения (b=h) .

Из условия равной прочности получаем:

Отношение весов двух валов равно отношению площадей их поперечных сечений:

Подставляя в это уравнение отношение b/D из условия равной прочности, получим

 

Осевой момент инерции

Моментом инерции механической системы относительно неподвижной оси a («осевой момент инерции»)называется физическая величина Ja, равная сумме произведений масс всех n материальных точек системына квадраты их расстояний до оси:

,

где:

  • mi — масса i -й точки,
  • ri — расстояние от i -й точки до оси.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.

,

где:

  • dm = ρ dV — масса малого элемента объёма тела dV,
  • ρ — плотность,
  • r — расстояние от элемента dV до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

Теорема Гюйгенса-Штейнера

Основная статья: Теорема Штейнера

Момент инерции данного тела относительно какой-либо оси зависит не только от массы, формы и размеровтела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этоготела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, ипроизведения массы тела m на квадрат расстояния d между осями:

Если — момент инерции тела от







ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.