Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Назначение и основы использования систем искусственного интеллекта





Искусственный интеллект — это одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка.

Среди множества направлений искусственного интеллекта есть несколько ведущих, которые в настоящее время вызывают наибольший интерес у исследователей и практиков. Опишем их чуть подробнее.

Представление знаний и разработка систем, основанных на знаниях (knowledge-based systems). Это основное направление в области изучения искусственного интеллекта. Оно связано с разработкой моделей представления знаний, созданием баз знаний, образующих ядро экспертных систем. В последнее время включает в себя модели и методы извлечения и структурирования знаний и сливается с инженерией знаний.

Разработка естественно-языковых интерфейсов и машинный перевод (natural language processing). Начиная с 50-х годов, одной из популярных тем исследования в области ИИ является компьютерная лингвистика, и, в частности, машинный перевод (МП). Идея машинного перевода оказалась совсем не так проста, как казалось первым исследователям и разработчикам.

Уже первая программа в области естественно-языковых (ЕЯ) интерфейсов — переводчик с английского на русский язык — продемонстрировала неэффективность первоначального подхода, основанного на пословном переводе. Однако еще долго разработчики пытались создать программы на основе морфологического анализа. Неплодотворность такого подхода связана с очевидным фактом: человек может перевести текст только на основе понимания его смысла и в контексте предшествующей информации, или контекста. В дальнейшем системы МП усложнялись, и в настоящее время используется несколько более сложных моделей:

применение так называемых «языков-посредников» или языков смысла, в результате происходит дополнительная трансляция «исходный язык оригинала — язык смысла — язык перевода»;

ассоциативный поиск аналогичных фрагментов текста и их переводов в специальных текстовых репозиториях или базах данных;

Структурный подход, включающий последовательный анализ и синтез естественно-языковых сообщений. Традиционно такой подход предполагает наличие нескольких фаз анализа:

Морфологический анализ — анализ слов в тексте.

Синтаксический анализ — разбор состава предложений и грамматических связей между словами.

Семантический анализ — анализ смысла составных частей каждого предложения на основе некоторой предметно-ориентированной базы данных.

Прагматический анализ — анализ смысла предложений в реальном контексте на основе собственной базы данных.

Синтез ЕЯ-сообщений включает аналогичные этапы, но несколько в другом порядке.

Обучение и самообучение (machine learning). Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний на основе анализа и обобщения данных. Включает обучение по примерам (или индуктивное), а также традиционные подходы из теории распознавания образов.

В последние годы к этому направлению тесно примыкают стремительно развивающиеся системы data mining — анализа данных и knowledge discovery — поиска закономерностей в базах данных.

 

 

Рисунок 25 – Схема Data Mining

Data Mining - это процесс обнаружения в сырых данных ранее неизвестных нетривиальных практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности (Рисунок 25).

Распознавание образов (pattern recognition). Традиционно — одно из направлений искусственного интеллекта, берущее начало у самых его истоков, но в настоящее время практически выделившееся в самостоятельную науку. Ее основной подход — описание классов объектов через определенные значения значимых признаков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Процедура распознавания использует чаще всего специальные математические процедуры и функции, разделяющие объекты на классы. Это направление близко к машинному обучению и тесно связано с нейрокибернетикой.

Новые архитектуры компьютеров (new hardware platforms and architectures). Самые современные процессоры сегодня основаны на традиционной последовательной архитектуре фон Неймана, используемой еще в компьютерных первых поколений. Эта архитектура крайне неэффективна для символьной обработки. Поэтому усилия многих научных коллективов и фирм уже десятки лет нацелены на разработку аппаратных архитектур, предназначенных для обработки символьных и логических данных. Создаются Пролог- и Лисп-машины, компьютеры V и VI поколений. Последние разработки посвящены компьютерам баз данных, параллельным и векторным компьютерам.

Тест Тьюринга

Тест Тьюринга — тест, предложенный Аланом Тьюрингом в 1950 г. в статье «Вычислительные машины и разум» (Computing machinery and intelligence) для проверки, является ли компьютер разумным в человеческом смысле слова. Тьюринг предложил тест, чтобы заменить бессмысленный, по его мнению, вопрос «может ли машина мыслить?» на более определенный.

Тест должен проводиться следующим образом. Судья (человек) переписывается на естественном языке с двумя собеседниками, один из которых — человек, другой — компьютер. Если судья не может надежно определить, кто есть кто, считается, что компьютер прошел тест. Предполагается, что каждый из собеседников стремится, чтобы человеком признали его. Чтобы сделать тест простым и универсальным, переписка сводится к обмену текстовыми сообщениями.

Переписка должна производиться через контролируемые промежутки времени, чтобы судья не мог делать заключения, исходя из скорости ответов. Это правило необходимо, потому что компьютеры работают гораздо быстрее, чем мозг человека.

Тьюринг предсказал, что компьютеры в конечном счете пройдут его тест. Он считал, что к 2000 году компьютер с памятью 1 миллиард бит (около 119 МБ) в ходе 5-минутного теста сможет обмануть судей в 30 % случаев. Это предсказание не сбылось.

Пока что ни одна программа и близко не подошла к прохождению теста. Такие программы, как ELIZA, иногда заставляли людей верить, что они говорят с человеком. Но такие «успехи» не являются прохождением теста Тьюринга. Во-первых, человек в таких беседах не имел никаких оснований считать, что он говорит с программой, в то время как в настоящем тесте Тьюринга человек активно пытается определить, с кем он беседует.

Ежегодно производится соревнование между разговаривающими программами и наиболее человекоподобной, по мнению судей, присуждается приз Лёбнера (Loebner). Есть также дополнительный приз для программы, которая, по мнению судей, пройдет тест Тьюринга. Этот приз еще не присуждался. Самый лучший результат показала программа A.L.I.C.E., выиграв тест 3 раза (в 2000, 2001 и 2004).







Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.