Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Космологическая сингулярность





 

Новый этап в развитии современной космологии наступил после работ Фридмана (1922 г.).

Используя релятивистскую теорию тяготения Эйнштейна, он получил математическую модель движения вещества во всей Вселенной под действием сил тяготения. Фридман доказал, что вещество Вселенной не может находиться в покое, т.е. Вселенная нестационарная: она должна либо сжиматься, либо расширяться. Из теории Фридмана следует, что наша Вселенная возникла из состояния космологической сингулярности.

В 1948 г. Гамов, Альфер и Херман предложили вариант возникновения горячей Вселенной как результат "Большого Взрыва" вещества.

Основная идея гипотезы горячей Вселенной заключалась в том, чтобы процессы протекания термоядерных реакций в самом начале расширения Вселенной после взрыва и по мере дальнейшей ее эволюции привели к наблюдаемому в космосе в настоящее время соотношению между количеством различных химических элементов и их изотопов.

Наблюдения за различными объектами Вселенной: горячими звездами, большими газовыми туманностями, гигантскими молекулярными облаками, Солнцем, космическими лучами, квазарами, галактиками и т.д. показазали, что в них, по массе, обнаруживается»25 - 27% гелия,»70 - 72% водорода и малая примесь остальных химических элементов, доля которых меняется от объекта к объекту, а содержание гелия и водорода постоянно.

Но до образования небесных тел (галактик, звезд и т.д.) вещество Вселенной однородно (все четыре силовых взаимодействий представляет одно "суперобъединение" при температуре T»1032 К) и ни каких перепадов давления не имелось, следовательно, не было и силы, в результате которой и началось стремительное расширение. Особую роль при этом сыграл физический вакуум.

Причем он в зависимости от условий может быть разным.

В нем вместе с плотностью энергии (из-за взаимодействия виртуальных частиц) одновременно возникают натяжения (подобно силам натяжения, возникающим при растяжении, например металлического стержня).

Эти натяжения эквивалентны отрицательному давлению, т.е. как бы возникает отрицательное давление. В обычных средах натяжения и давления составляют малую долю полной плотности энергии.

В физическом вакууме отрицательное давление огромно и по абсолютной величине равно плотности энергии.

По мере расширения Вселенной (происходит понижение температуры) симметрия между электромагнитным и слабым взаимодействием нарушается.

Как известно, слабое взаимодействие связывают с наличием особых зарядов (отличных от электрических зарядов, между которыми осуществляется электромагнитное взаимодействие с помощью фотонов) и это взаимодействие происходит на очень малых расстояниях.

Это связано, прежде всего, с большой массой переносчиков слабого взаимодействия W+, W- и Zo- бозонов.

Однако при температуре выше T»1015 К, как показывает расчет, существует единое электрослабое взаимодействие между частицами.

Его переносчики W+, W- и Zo- бозоны и g-фотоны имеются в изобилии и не обладают массой. Нет массы у кварков и лептонов.

Спустя несколько минут после расширения Вселенной температура упала до»109 К.

При таких температурах уже стало возможным соединение протонов и нейтронов с образованием ядер дейтерия, которые в результате термоядерных реакций приводили к образованию ядер атомов гелия.

Но из-за продолжающегося расширения Вселенной и снижения температуры термоядерные реакции ранней Вселенной прекращались.

За 5 минут успело образоваться около 25% гелия, а 75% составлял водород.

Действительно многочисленные наблюдения показали, что первое поколение звезд во Вселенной имело именно такой процентный состав.

Ядра атомов более тяжелых элементов появились во Вселенной много миллиардов лет позже в результате ядерных реакций в недрах звезд.

Все активные процессы с участием элементарных частиц закончились, и наступил длительный период относительно спокойного расширения Вселенной.

Расширяющееся вещество представляло собой высокотемпературную, ионизированную плазму, не прозрачную для излучения фотонов, которое и определяло в тот момент силу давления.

В этой смеси плазмы и излучения имелись небольшие колебания плотности вещества - звуковые волны.

По истечении»3×105 лет фотонной эры, за счет продолжающегося расширения Вселенной, плазма остыла до»4×103 К и превратилась в нейтральный газ в процессе захвата ядрами атомов свободных электронов. Этот газ стал прозрачным для фотонов, которые получили (открыты в 1965 г.) название реликтового излучения.

В настоящее время энергия реликтовых фотонов уменьшилась, а температура фотонного излучения составляет всего 3 - 5 К.

Реликтовое излучение представляет собой слабый радиошум, приходящий из космоса независимо от направления приемной антенны. Число фотонов реликтового излучения, находящихся в каждом 1 см3 Вселенной,»500, а их плотность энергии»5×10-13 эрг/cм3.

Из-за отсутствия давления излучения упругость нейтрального газа резко упала и стало возможным проявление гравитационной неустойчивости, которая привела к образованию достаточно больших по размеру сгущений газа.

Вследствие уплотнения звуковых колебаний при распространении их в этих комках газа, силы тяготения начинают увеличиваться, что и приводит к образованию массивных облаков, эволюционирующих в дальнейшем в сверхскопления галактик, скопления галактик и галактики.

Все что наблюдается сегодня в космосе - проявление космологической сингулярности.

В настоящее время считается, что никакого предварительного сжатия перед космологической сингулярностью не было, она стала истоком времени, а сингулярность внутри черной дыры является концом ручейков реки времени.

Поэтому в космологической сингулярности время и пространство так же распадаются на кванты.

В связи с этим теряет смысл сам вопрос, а что было еще раньше?

Можно только отметить, что вблизи сингулярности в масштабах квантов времени и пространства, существовала "пена" этих квантов, т.е. наблюдались квантовые флуктуации пространства и времени.

В это время рождаются и тут же исчезают небольшие "виртуальные" замкнутые миры и виртуальные черные, и белые дыры.

Столь малые размеры при больших энергиях кипящей "пены", обусловили возможность существования не трех, а более измерений.

Однако эти дополнительные измерения остаются скрученными и не реализуются, а остаются только три пространственных измерения, которые при расширении вещества приводят к современному состоянию Вселенной.

Следовательно, время в сингулярности в корне меняет свои квантовые свойства и начало расширения Вселенной является истоком нашего непрерывного потока времени, которое течет в одном направлении: от прошлого к будущему.

Известно, что космологическая сингулярность произошла»15 - 20 млрд. лет назад.

За это время, свет вышедший из какого-либо источника даже в момент начала расширения, успеет пройти конечное расстояние во Вселенной»15-20 млрд. световых лет или около»6×1015 пк.

Поэтому точки пространства Вселенной, лежащие от нас на таких расстояниях, называют горизонтом видимости.

Следовательно, те области пространства, которые лежат за горизонтом видимости, сегодня принципиально не наблюдаемы, а вблизи горизонта видимости мы можем наблюдать вещество из далекого прошлого.

Из-за эффекта Доплера красное смещение света неограниченно нарастает, когда излучающий объект приближается к горизонту видимости.

А на самом горизонте - оно бесконечно, поэтому мы можем видеть лишь конечное число звезд и галактик во Вселенной.

В связи с этим решается парадокс классической космологии: фотометрический, который заключается в следующем.

Так как Вселенная бесконечна, она заполнена бесконечным числом звезд и луч зрения рано или поздно встретит светящуюся звезду.

В этом случае все небо должно сиять как поверхность Солнца или поверхность других звезд.

В действительности из-за наличия горизонта видимости мы видим конечное число звезд, которые редко разбросаны в пространстве.

Наше ночное небо представляется темным: в нем видны хаотично разбросанные светящиеся точки звезд.

Подтверждением горячего начала возникновения нашей Вселенной являются результаты наблюдений за объектами космического пространства.

К ним относятся, например, наличие реликтового излучения, наличие»25 - 30% гелия в составе до звездного вещества ранней Вселенной.

 

Поляризация времени

Мы живем в мире, в котором время является лишь одномерным и однонаправленным: оно течет от прошлого через настоящее к будущему. Время выстроилось в три стрелы: психологическую, термодинамическую и космологическую. На современном этапе все они направлены в одну сторону.

Однако в сверхсильных гравитационных полях или в состоянии сингулярности не происходит разрыва связи времени: просто оно распадается на кванты времени, т.е. на миллиарды миллиардов квантовых ручейков или квантовых капель. Разрыва времени не происходит, а происходит его квантовое изменение. Реальное время двумерно. Его можно изобразить векторами на плоскости, а мы видим лишь его проекции на одну ось. Во Вселенной не существует одновременности. Любое реальное тело в мире разновременно. Любой процесс, протекающий как бы мгновенно, есть лишь равнодействующая бесконечно разных, бесконечно далеких одна от другой эпох, скрещенных в миг в данной точке тела.

Каждый объект (человек) существует в своем индивидуальном времени. Но изолированных объектов нет, все тела взаимодействуют со своим окружением (оно бесконечно): атом с атомом, звезда со звездой, галактика с галактикой и т.д. Эта связь реальна, но одновременна ли она? Мы видим ближайшую звезду Проксиму из созвездие a-Центавра, какой она была 4,3 световых года назад. Луч от нашего Солнца идет к Земле ~8,3 минуты. Удаленные галактики видятся нам такими, какими они были миллиарды лет назад. Горизонт видимости нашей Вселенной ~1010 световых лет.

Следовательно, Вселенная в любой точке пространства в любые мгновения разновременна. Реальной одновременности не существует.

Одновременная разновременность - реальный физический процесс, который определяет всю структуру мироздания, взаимодействие всех материальных объектов Вселенной: пыли, газа, частиц, фотонов, гравитационных волн и т.д. Одно приходит из прошлого вчера, другое из прошлого миллиарды лет назад, а в сумме их действие в любом месте мгновенно. В ответ каждый объект на воздействие этих разновременных сил отвечает своим воздействием, но и оно достигает его соседей не одновременно.

Таки образом, действующее время любой точки Вселенной - равновесие всех прошедших эпох, вся безмерная громада миллиардолетий, сведенная в одно мгновение. Следовательно, настоящее никогда не теряется в бездне прошлого и реально существует в далеком будущем.

Для выхода из однолинейности времени возможен переход в двухмерное время, т.е. существует перпендикулярное время - в итоге произойдет поляризация времени. В результате оно будет течь по замкнутой криволинейной траектории, например, по окружности. В этом случае не происходит разрыва времени, а наблюдается переход в соседнее время, в иное время, не оторванное от своего, а только искривленное. В каждый момент мы движемся вперед в сторону будущего, а в сумме все больше и больше отклоняемся от него. В какой-то точке, продолжая двигаться вперед, мы расстаемся со своим будущим, не пересекая нуля времени, и начинаем движение к своему прошлому, которое теперь и является нашим будущим. Происходит движение по кольцу времени.

Если создать генератор фазового времени - сингулятор времени, который бы позволил сжимать и растягивать время, менять знак течения времени, а также искривлять его, т.е. использовать его поляризацию, то можно было бы вернуться в любую эпоху прошлого или попасть в будущее.

 

10.12. Наша Галактика - “Млечный Путь”

 

Галактика “Млечный Путь” - спиральная звездная система, содержащая» 1011 звезд разных поколений, к которой относится и наше Солнце, Земля и др. планеты солнечной системы.

Кроме звезд галактика имеет межзвездную среду из газовых облаков и пыли. На расстоянии 8 - 10 кпк, где находится наше Солнце, скорость вращения галактики 220 - 250 км/c.

    Рис. 10.10

По своей структуре галактика “Млечный Путь” относится к спиральным. Большое число видимых звезд галактики занимают в пространстве объем в виде диска, а меньшая их часть образуют гало сферической формы (рис. 10.10).

В центральной части диска имеется утолщение (балдж). Поперечник диска галактики»30 кпк, балджа - 8 кпк.

Галактика имеет плоскость симметрии, называемую галактической плоскостью (плоскость диска), и ось симметрии (ось вращения галактики).

Наличие диска Галактики указывает на ее быстрое вращение вокруг оси вращения, которое является дифференциальным.

При R > 15 кпк линейная скорость вращения либо остается постоянной, либо незначительно возрастает, что связывают с существованием у Галактики

массивной короны, содержащей скрытую массу неизвестного вещества (предполагается, что это мощные облака нейтрино).

В галактической плоскости находятся спиральные рукава, толщиной 1-2 кпк, в которых сосредоточены почти все горячие звезды высокой светимости и значительная часть газопылевой материи.

Масса нашей Галактики»2×1011 Мсс»1,99×1033 г).

На звездную составляющую галактики приходится 98% Мгал, на газ и др. компоненты межзвездной среды - 2% Мгал.

Пространственная концентрация звезд уменьшается с удалением от центра Галактики: в центре она составляет»106 звезд в 1 пк3, на расстоянии 1 кпк от центра - несколько звезд в 1 пк3, в галактических окрестностях Солнца - примерно 1 звезда на 8 пк3. Наше Солнце расположено вблизи галактической плоскости на расстоянии от нее»20 пк и»8 - 10 кпк от галактического центра, на внутреннем краю рукава Ориона.

Большинство звезд Галактики входит в состав двойных звезд, кратных звездных систем, рассеянных и шаровых звездных скоплений.

Рассеянные скопления (открыто 1000, предполагается наличие их до 50000) равномерно распределены по радиусу Галактики.

Шаровые звездные скопления (открыто 150, предполагается, что их максимальное число - 500), включающие до 105 звезд, сильно концентрируются к центру Галактики.

Молекулярный газ сконцентрирован вблизи галактической плоскости, причем он прижат к ней сильнее, чем любые другие газовые компоненты. Действительно, чем холоднее газ, тем труднее ему противостоять притяжению центральной части Галактики, которое стремится сконцентрировать все вещество в плоскости вращения. Более горячий газ почти не удерживается вблизи плоскости Галактики и уходит вверх, в гало, а холодные компоненты межзвездной среды образуют вдоль галактической плоскости диск, толщина которого возрастает по мере удаления от центра галактики к периферии в несколько раз в связи с уменьшением тяготения.

Период вращения Галактики в окрестностях Солнца составляет 230-250 млн лет - галактический год. Спиральные рукава Галактики вращаются с постоянной скоростью. В окрестности Солнца существует коротационный круг диаметром 250 пк, где wгал = wспир.

Галактические объекты различаются по возрастам, химическому составу, пространственным положениям и кинематическим характеристикам. Существует население I (диска) и население II (гало).

Возраст Галактики оценивается в»15×109 лет. Население II - старые объекты. Подавляющее большинство звезд гало имеет массу»0,85 Мс. В них понижено, по сравнению с Солнцем (звезда третьего поколения), содержание металлов. Наблюдается их сильная концентрация к центру Галактики. Все они движутся вокруг центра Галактики по сильно вытянутым и хаотически ориентированным эллиптическим орбитам, которые образуют сферическую составляющую галактики (гало).

К населению II относится подсистема шаровых скоплений, планетарных туманностей, короткопериодических цефеид, красных гигантов и др. объектов.

Среди населения I (диска) встречаются звезды различных масс и широкого диапазона возрастов от 1 до 1010 лет.

Самую плоскую подсистему толщиной»200 пк (парсек) по нормали к плоскости Галактики образуют массивные звезды высокой светимости спектральных классов О и В, межзвездная пыль и газ, гигантские молекулярные облака (в основном водорода) и др. Эти объекты сравнительно молодые, вращаются по круговым орбитам вокруг центра Галактики и связаны со спиральными рукавами. Большинство объектов Галактики сосредоточено в ее диске. Возраст самых старых объектов для звездных скоплений населения I не более 5-7 млрд. лет, имеют содержание химических элементов, близкое к Солнечному.

Замечание: по последним данным в центре нашей Галактики обнаружен звездоподобный объект Стрелец А; имеет массу»2,5×106 МС и занимает малые размеры. Предполагается, что это черная дыра.

В особую составляющую можно выделить балдж - звездное утолщение вокруг ядра Галактики по форме, близкое к сферическому и не относящееся к диску.

Области наиболее сильного звездообразования расположены в кольце от 3 кпк до 7 кпк от центра Галактики; здесь же сосредоточены и гигантские молекулярные облака, масса которых составляет 80 % всего молекулярного вещества межзвездной среды, и связанные с ними молодые звезды.

В пределах этого кольца содержится наибольшее число пульсаров и остатков от взрывов сверхновых звезд и оттуда исходит наиболее сильное нетепловое радиоизлучение, повышена концентрация областей горячего ионизированного газа (НII) и ассоциаций горячих молодых звезд. Поэтому последние несколько миллиардов лет звездообразование происходило в кольце 3 - 7 кпк от центра и в галактическом центре. Установлено, что звезды не рождаются по одиночке, а образуют звездные ассоциации и звездные комплексы, которые возникают также группами.

Примерно 10 млрд. лет назад произошел перерыв в звездообразовании, как предполагается из-за массового взрыва сверхновых. В результате этого межзвездная среда была обогащена металлами и сильно перемешена. Затем началось осаждение вещества к центру и образование плоской подсистемы галактики.

Галактический центр - область радиусом»1 кпк в центре ядра Галактики, в созвездии Стрельца. Главным элементом галактического центра считается звездное скопление, имеющее форму эллипсоида вращения с растущей концентрацией звезд к центру. Большая ось эллипсоида лежит в галактической плоскости, малая - расположена вдоль оси вращения. Отношение полуосей»0,4. Звезды на расстоянии 1 кпк от галактического центра движутся вокруг него со скоростью 270 км/c. Период обращения 25 млн. лет. Масса скопления 1010 МС. В пределах бара расположен газовый диск (R» 700 - 1000 пк) массой 108 МС, состоящий преимущественно из молекулярного водорода.

Еще ближе к центру обнаружено вращающееся и расширяющееся кольцо молекулярного водорода (массой»105 МС) радиусом»150 пк и скоростью вращения»50 км/c, скорость расширения»140 км/c. Ось вращения кольца наклонена к оси вращения Галактики на»70- 100. Наблюдаемая картина является следствием взрыва в ядре Галактики, произошедшего около 12 млн. лет назад. В состав кольца входят газопылевые облака, самым крупным из них является Sgr 82 массой»3×106 Мс на расстоянии»120 пк от центра диаметром»30 пк. Внутри молекулярного кольца находится центральное пылевое облако (R»15 пк) с плотностью» .

Тонкий центральный молекулярный диск, в свою очередь, погружен в более утолщенный и протяженный диск из атомарного водорода, ось которого наклонена к галактической оси на» 300. Возможно, вещество этого диска было захвачено Галактикой за счет приливных сил и поглощения малой галактики-спутника.

Вблизи самого центра Галактики наблюдаются два радиоисточника Sgr A(W) - Стрелец А (западный) и Sgr A(Е) - Стрелец А (восточный), который является протяженным, находится за центром, является остатком вспышки сверхновой звезды. Западный, сверхкомпактный источник Sgr A(W) совпадает с динамическим центром Галактики, окружен газопылевым кольцом радиуса»2 пк, имеет скорость вращения»80 км/c.

Внутри сферы R=1,5 пк пыли нет и весь газ ионизирован. Эта область имеет массу 5×106 Мс, в ней наблюдаются плазменные облака, бар (перемычка) и компактный источник нетеплового излучения Sgr A* радиусом»10-4 пк, который смещен относительно бара на»0,15 пк.

Огромное скопление газа и пыли в ядре приводят к бурному развитию процессов звездообразования на протяжении всей эволюции Галактики. В самом центре ядра возможно существование сверхмассивной черной дыры массой»106 Мс или сверхкомпактного звездного скопления.

Магнитное поле нашей Галактики наиболее сильно в спиральных ветвях, где силовые линии параллельны плоскости галактики и вытянуты вдоль спиральных рукавов. Напряженность магнитного поля в диске галактики составляет»2×10-5 Э.

Все объекты во Вселенной находятся в движении. Например, наша Земля вращается вокруг собственной оси со скоростью ~0,5 км/c, а вокруг Солнца - со скоростью ~30 км/c. Солнце движется к созвездию Геркулеса со скоростью ~20 км/c, а Солнечная система вращается вокруг центра галактики “Млечный Путь” со скоростью ~250 км/c.

В свою очередь, наша Галактика движется к созвездию Гидра со скоростью ~600 км/c.

Местное скопление галактик (Млечный Путь, Туманность Андромеды и др.) движется к созвездию Персея.

Сверхскопление (куда входит наша Галактика), сверхскопление в созвездии Дева и ряд сверхскоплений галактик в Персее и Гидре Центавра движутся со скоростью ~700 км/c к созвездию Южный Крест.

Считается, что там находится мощный притягиватель неизвестной природы, масса которого оценивается в 10 тысяч масс Галактики “Млечный Путь”, находящегося на расстоянии 150 - 300 млн. световых лет от нас.

 

Время и Вселенная

 

Человечество всегда интересовал вопрос, почему время течет в одну сторону - от прошлого в будущее?

В одних процессах время замедляет свой бег, а в других - ускоряет.

Например, среди частиц космических лучей встречаются протоны высоких энергий, движущиеся со скоростью, близкой к скорости света на 99,9%.

Время у них идет в ~1010 раз медленнее, чем на Земле.

Если по нашим часам такой протон пересечет нашу Галактику за 100 000 лет, то по собственным часам он ее пересечет за 5 мин.

Еще пример, из двойной звездной системы SS 433 (до нее 104 световых лет) истекают в противоположные стороны две мощные газовые струи нагретого водорода со скоростью ~8×104 км/c каждая.

Из-за вращения системы направление выброса струй все время меняется в пространстве с периодом 164 дня.

Дважды за период выброс струй происходит точно поперек луча зрения на Земле.

В этом случае эффект Доплера не проявляется, но наблюдается покраснение (изменение частоты) спектральных линий водорода, вызванное замедлением времени из-за быстрого истечения газовых струй.

С другой стороны, тяготение изменяет пространство-время. В сильном поле тяготения время замедляет свой бег.

Например, на поверхности нейтронной звезды время течет в 1,5 раза медленнее, а в ее центре - в 2,5 раза по сравнению с нашим временем.

Вблизи черной дыры силы тяготения неограниченно возрастают, изменяя геометрические свойства пространства, и замедляется течение времени.

С точки зрения внешнего наблюдателя при приближении к горизонту событий темп течения времени замедляется и на горизонте событий время растягивается до бесконечности.

Внутри самой черной дыры время распадается на кванты. Радиальная координата пространства заменяется координатой времени и наоборот.

Для наблюдателя, приближающегося к черной дыре со скоростью света, время также замедляет свой бег, как на любом быстро летящем теле. Это замедление компенсирует замирание падения корабля.

  Рис. 10.11

Растягивающаяся до бесконечности картина приближения корабля к границе черной дыры из-за все большего растягивания секунд на падающем корабле измеряется конечным числом секунд.

По часам падающего наблюдателя до пересечение границы черной дыры, протекло конечное число секунд.

Кроме черных дыр, возможно существование белых дыр. В белую дыру упасть нельзя, из нее можно только вылететь. Белые дыры вероятно проявляют себя в квазарах - компактных звездных образованиях - ядер некоторых галактик, из которых истекает материя мощной энергии.

Широко обсуждается существование горловины между черной и белой дырами (рис. 10.11). Однако белые дыры и горловина неустойчивы и в природе пока не обнаружены.

При путешествии наблюдателя (космонавта) с около световой скоростью в просторах Вселенной лучи света от звезд становятся наклонными в сторону его движения.

Поэтому он увидит звезды, как бы сместившимися на небосводе к точке, куда направлено его движение.

Это связано с аберрацией света. Причем, небо впереди будет усеяно звездами гуще, чем сзади. При этом изменится и цвет звезд.

Впереди будут наблюдаться голубовытые звезды (фиолетовое смещение при сближении) и их яркость увеличена.

В противоположном направлении, на небосводе мало слабосветящихся, красноватых звезд (красное смещении - при удалении объектов).

Свет от звезд мы видим каким он был в прошлом многие миллионы и миллиарды лет назад. Например, луч света от Солнца до Земли движется ~8 минут. Мы и вспоминаем в основном прошлые события, и только писатели-фантасты уводят читателей в будущее.

При движении со световой скоростью к центру нашей Галактики "Млечный Путь" и обратно, по земным часам пройдет около 60000 лет.

На Земле за это время сменятся многие поколения людей, а по часам на звездолете пройдет около 40 лет, т.е. космонавты по возвращении окажутся заброшенными в далекое будущее.

Таким образом, время не всегда течет плавно и неизменно из прошлого в будущее: оно может замедлять или ускорять свой бег и даже может распадаться на кванты.

В элементарных процессах время обратимо, а в сложных процессах - необратимо (II закон термодинамики и другие явления, например, диффузия молекул капли чернил в воде).

Почему во всех этих процессах возникает необратимость, если они суммируются из движений частиц, которые явно обратимы во времени?

Все дело в том, что в сложной системе из многих частиц, в силу случайности многих взаимодействий между ними, неизбежно нарастает беспорядок (хаос).

Энтропия и есть мера беспорядка, т.е. вероятностные законы статистики при случайных взаимодействиях определяют направление необратимых процессов.

Течение времени проявляется в любых процессах и в одну сторону.

Существуют три вида явлений в природе, которые характеризуют общую “ стрелу времени ”.

Первый класс явлений - это термодинамические процессы. Они протекают в направлении увеличения беспорядка и роста энтропии, т.е. они определяют “ термодинамическую стрелу времени ”.

Второе явление - это продолжающееся расширение Вселенной, которое определяет “ космологическую стрелу времени ”.

Третий класс явлений - это наши психологические состояния - процессы, вызывающие субъективное ощущение течение времени, т.е. наша память определяет “ психологическую стрелу времени ”.

Все три стелы времени в нашей Вселенной направлены в одну сторону.

Любая психологическая работа мозга увеличивает энтропию окружающего пространства, поэтому и совпадают по направлению "психологическая и термодинамическая стрелы времени".

Однако в момент рождения Вселенной ее квантовое состояние было максимально упорядочено, а сейчас все виды энергий переходят в тепловую.

Если же Вселенная начнет сжиматься, то "космологическая стрела времени" повернет в обратную сторону, а остальные две сохранят направление. Между тремя стрелами времени наступит рассогласование.

Существование состояния сегодняшней Вселенной и жизни возможно только на стадии расширяющейся Вселенной, когда все три стрелы времени направлены в одну сторону.

 

Солнечная система

Наблюдая в темную августовскую ночь усеянное звездами небо, древние мыслители, философы и ученые разных эпох задумывались о происхождении Земли, звезд и окружающего космического пространства. Предлагались различные гипотезы происхождения Солнечной системы. Например, гипотезы Декарта, Бюффона, Канта, Лапласа, Шмидта и др.

Анализируя движение, и параметры планет Солнечной системы обнаружено, что из 40 спутников 29 обращаются в том же направлении, что и планеты и Солнце (сколько в действительности имеется спутников планет - постоянно уточняется).

    Рис. 10.12  

Из 10 спутников Урана, вращающихся в обратном направлении, 4 согласуют свое движение с направлением вращения Урана, чья ось наклонена почти под прямым углом к плоскости эклиптики (980). Следовательно, только 6 спутников имеют направление движения, обратное движению своих планет. Планеты Венера и Уран имеют обратное вращение вокруг своей оси.

Cчитается, что приливное взаимодействие протопланетных сгустков ответственно за обратное вращение Венеры и синхронизацию этого вращения относительно Земли.

Изучение динамики движения и параметров Солнца, планет и спутников, позволило группе академика Шило предложить модель образования Солнечной системы, согласно которой они возникли из энергетически общей динамической системы, изолированной от других звезд.

Это могло быть спиралевидное облако, диаметр которого превышал современную Солнечную систему. Облако вращалось против часовой стрелки и могло возникнуть в рукаве нашей Галактики "Млечный Путь" в условиях сжатия, гравитационной неустойчивости и развития сильных газопылевых вихрей.

В центре ПротоСолнечного облака, которое можно назвать спиралью первого порядка (рис. 10.12), образовалось ядро, содержащее в себе основную массу облака (более 95 %).

На витках спирали первого порядка возникли местные спиралевидные движения, или вихри - протопланетные спирали второго порядка.

Их ядра впоследствии преобразовались в планеты. На них, в свою очередь, формировались спирали третьего порядка со своими ядрами - будущими спутниками планет. За счет магнитного поля произошла передача полного момента импульса от Солнца планетам.

В соответствии с направлением вращения всего облака (спирали первого порядка), спутники должны были приобрести движение,

согласованное с вращением планет и Солнца, возникшего из центрального протоCолнечного ядра.

Такая модель образования Солнечной системы снимает противоречия в распределении массы и момента импульса между Солнцем, планетами и их спутниками. У Солнца и планет-гигантов угловая скорость внешних газовых слоев отличается от угловой скорости внутренних слоев.

Этим объясняется и сильный рост удельного момента импульса по мере удаления планет от Солнца.

Предложенная модель образования Солнечной системы из спиралевидного облака с вихревой структурой объясняет причины сосредоточения спутников у Юпитера и Сатурна. Действительно, ближе к Солнцу спутники или вообще не возникали (Меркурий, Венера), или их количество лимитировалось незначительными массами вещества на витках спирали первого порядка (Земля, Марс), т.к. центральное ядро отбирало вещество, удаленное от протопланетных ядер спиралей второго порядка. Возникший дефицит массы не позволял или затруднял формирование спиралей третьего порядка. По мере удаления от ПротоСолнечного ядра, на витках спиралей первого порядка гравитационное его влияние было слабее, поэтому в сгустках ПротоСолнечного вещества накапливались достаточно большие массы с энергетически напряженными движениями вихрей. Из них формировались спирали второго порядка, чьи ядра затем превратились в планеты-гиганты.

В свою очередь на их спиральных витках вихревые движения преобразовывались в спирали третьего порядка, из ядер которых затем возникли спутники планет. На самых удаленных витках спирали первого порядка гравитационное поле еще более ослаблено и термический режим был невысок, что возбуждало менее сложные вихревые движения, и спутников формировалось меньше. В зоне образования планеты Плутон скорости убегания частиц были настолько малы, что на самом последнем витке спирали первого порядка происходило рассеивание вещества за пределы спирального облака. Подобные условия образования планет допускают формирование сложных двойных спиралей с разными по массе ядрами, вращающимися вокруг барицентра. Примером такой системы могут служить Земля и ее спутник Луна.

Спиралевидные движения широко распространены в космическом пространстве. Например, спиралевидные галактики, к которым относятся наша Галактика "Млечный Путь", галактика Андромеда и др.

В связи с рассматриваемой моделью возникает проблема преобразования спиралевидных движений в кольцевые. Наличие спиралей и колец удалось обнаружить в Калифорнии (Невадийский гранитный массив). Спирали, или вихри - распространенная форма формирования и эволюционного развития вещества в Метагалактике. После полного распада спиралей первого, второго и третьего порядков произошло образование из их ядер Солнца, планет и спутников. Этот процесс длился 7 - 8 млрд. лет. Формирование планет земной группы (Меркурий, Венера, Земля, Марс) заняло около 108 лет. Формирование планет-гигантов происходило в два этапа. Сначала образовались массивные твердые ядра. Для Юпитера этот процесс длился 3×107 лет, для Сатурна - 2×108 лет, для Урана и Нептуна - около 109 лет. После образования ядра с массой около двух масс Земли начинается аккреция газа, которая длится не менее 109 лет.

Солнце вместе с планетами вращается, как и все звезды, вокруг галактического центра. Находясь на расстоянии»8 - 10 кпк от центра Галактики Солнце, двигаясь по эллиптической орбите, совершает один оборот за»230 млн. лет. Одновременно Солнце совершает колебательное движение относительно галактической плоскости. Причина колебательного движения Солнца (Солнечной системы) заключается в том, что Солнце находится вблизи галактического экватора на расстоянии»20 пк.

Таблица 10.3  
Геологи-ческая эра Кризис-ный период Пересечение Солнцем галактического экватора
Кайнозой   Мезозой    

В связи с тем, что основная часть массы нашей Галактики сосредоточена в тонком диске, Солнце испытывает гравитационное притяжение к этому диску и приближается к экватору. После пересечения галактического экватора оно по инерции будет продолжать удаляться от экватора, но будет испытывать действие возвращающей силы со стороны тонкого диска и в некоторой точке изменит направление на обратное, т.е. станет приближаться к экватору, но с другой стороны. Амплитуда колебаний (максимальное удаление от галактической плоскости) составляет примерно 20 пк, а период около 60 млн. лет. Следовательно, каждые»30 млн. лет Солнце пересекает плоскость Галактики. Сейчас мы находимся на расстоянии»10 пк от галактического экватора. Это значение расстояния фиксирует фазу колебания. Зная фазу и период можно рассчитать моменты пересечения Солнечной системой галактического экватора.







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.