Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







НЕТРАДИЦИОННЫЕ И ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ





КОНСПЕКТ ЛЕКЦИЙ ДЛЯ СТУДЕНТОВ

ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ

Часть 2

НЕТРАДИЦИОННЫЕ И ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Состояние и перспективы использования нетрадиционных и

Возобновляемых источников энергии

Традиционные и нетрадиционные источники энергии

При существующем уровне научно-технического прогресса энергопотребление может быть покрыто лишь за счет использования органических топлив (уголь, нефть, газ), гидроэнергии и атомной энергии на основе тепловых нейтронов. Однако, по результатам многочисленных исследований органическое топливо к 2020 г. может удовлетворить запросы мировой энергетики только частично. Остальная часть энергопотребности может быть удовлетворена за счет других источников энергии – нетрадиционных и возобновляемых.

Возобновляемые источники энергии – это источники на основе постоянно существующих или периодически возникающих в окружающей среде потоков энергии. Возобновляемая энергия не является следствием целенаправленной деятельности человека, и это является ее отличительным признаком.

Невозобновляемые источники энергии – это природные запасы веществ и материалов, которые могут быть использованы человеком для производства энергии. Примером могут служить ядерное топливо, уголь, нефть, газ. Энергия невозобновляемых источников в отличие от возобновляемых находится в природе в связанном состоянии ивысвобождается в результате целенаправленных действий человека. В соответствии с резолюцией № 33/148 Генеральной Ассамблеи ООН(1978 г.) к нетрадиционным и возобновляемым источникам энергии относятся: солнечная, ветровая, геотермальная, энергия морских волн, приливов и океана, энергия биомассы, древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников и гидроэнергия больших и малых водотоков.

Запасы и динамика потребления энергоресурсов, политика России в области нетрадиционных и возобновляемых источников энергии

Потенциальные возможности нетрадиционных и возобновляемых источников энергии составляют, млрд. т.у.т в год:

- энергии Солнца – 2300;

- энергии ветра – 26,7;

- энергии биомассы – 10;

- тепла Земли – 40000;

- энергии малых рек – 360;

- энергии морей и океанов – 30;

- энергии вторичных низкопотенциальных источников тепла – 530.

Разведанные запасы местных месторождений угля, нефти и газа в России составляют 8,7 млрд. т.у.т., торфа – 10 млрд. т.у.т.

По имеющимся оценкам, технический потенциал ВИЭ в России составляет порядка 4,6 млрд. т у.т. в год, что превышает современный уровень энергопотребления России, составляющий около 1,2 млрд. т.у.т. в год. Экономический потенциал НВИЭ определен в 270 млн. т у.т. в год, что составляет около 25% от годового внутрироссийского потребления. В настоящее время экономический потенциал ВИЭ существенно увеличился в связи с подорожанием традиционного топлива и удешевлением оборудования возобновляемой энергетики за прошедшие годы.

Доля возобновляемой энергетики в производстве электроэнергии составила в 2002 г. около 0,5% от общего производства или 4,2 млрд. кВт·ч, а объем замещения органического топлива – около 1% от общего потребления первичной энергии или около 10 млн. т.у.т. в год. Положительным фактором для развития НВИЭ в России является начавшееся создание законодательной базы. Так, Законом «Об энергосбережении» в 1996 г. установлена правовая основа применения электрогенерирующих установок на НВИЭ, состоящая в праве независимых производителей этой электроэнергии на подсоединение к сетям энергоснабжающих организаций. Государственной Думой и Советом Федерации принят Закон «О государственной политике в сфере использования нетрадиционных возобновляемых источников энергии». Этот правовой акт устанавливает минимально допустимые в современных условиях экономические и организационные основы развития. Ведется разработка федеральной программы по использованию НВИЭ. Предполагается развивать производственные мощности оборудования нетрадиционной энергетики, на что будет выделено 1,315 млрд. рублей: 17% из федерального бюджета, остальные – из региональных и местных бюджетов.

В мае 2003 г. на рассмотрение правительства России вынесена «Энергетическая стратегия России на период до 2020г.». Одним из направлений данного документа является рассмотрение возможностей использования возобновляемых источников энергии.

Стратегическими целями использования возобновляемых источников энергии и местных видов топлива являются:

- сокращение потребления невозобновляемых топливно-энергетических ресурсов;

- снижение экологической нагрузки от топливно-энергетического комплекса;

- обеспечение децентрализованных потребителей и регионов с дальним и сезонным завозом топлива;

- снижение расходов на дальнепривозное топливо.

Необходимость развития возобновляемой энергетики определяется ее ролью в решении следующих проблем:

- обеспечение устойчивого тепло- и электроснабжения населения и производства в зонах децентрализованного энергоснабжения, в первую очередь в районах Крайнего Севера и приравненных к ним территориях. Объем завоза топлива в эти районы составляет около 7 млн. т нефтепродуктов и свыше 23 млн. т угля;

- обеспечение гарантированного минимума энергоснабжения населения и производства в зонах централизованного энергоснабжения, испытывающих дефицит энергии, предотвращение ущербов от аварийных и ограничительных отключений;

- снижение вредных выбросов от энергетических установок в городах и населенных пунктах со сложной экологической обстановкой, а также в местах массового отдыха населения.

В последнее время растет интерес к нетрадиционной энергетике у региональных АО-энерго и местных администраций.

Оценки показывают, что к 2010 г. может быть осуществлен ввод в действие около 1000 МВт электрических и 1200 МВт тепловых мощностей на базе возобновляемых источников энергии при соответствующей государственной поддержке.


СОЛНЕЧНАЯ ЭНЕРГЕТИКА.

СОЛНЕЧНЫЕ СИСТЕМЫ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ НА ОСНОВЕ

Крупнейшие солнечные электростанции

Кремер-Джанкшен-США-60.000кВт-1987г. - коллекторный

приёмник.

Деггет-США-45.000кВт-1985г. - коллекторный приёмник.

Борреро-Спрингс-США-15.000кВт-1985г. - фотогальванические преобразователи.

Солар-1-США-12.500кВт-1982г. - башенный преобразователь.

Корриза-Плейн-США-6.500кВт-1984г. - фотогальванические преобразователи.

Бет–Ха-аравах-Израиль-5.000кВт-1984г. - прудный приёмник.

Крымская-Украина-5.000кВт-1986г. - башенный приёмник.

 

БИОЭНЕРГЕТИКА. БИОМАССА КАК

ИСТОЧНИК ЭНЕРГИИ.

Биомасса – это органические соединения углерода. Энергия биомассы возникает в результате фотосинтеза под действием сол­нечного излучения, в процессе образования органических веществ и аккумулирования в них химической энергии.

Поток солнечной энергии, преобразуемый на Земле в результате фотосинтеза, составляет 250 кВт на человека, что эквивалентно 250000 крупных АЭС (по 6 млн. кВт каждая). Для сравнения – мощность электрических станций на планете составляет около 0,8кВт на человека.

В результате фотосинтеза образуются углеводы, содержащие углерод в соединениях с кислородом и водородом (например, глюкоза C6H12O6 или сахароза C12H22O11). В процессе соединения с кислородом при сгорании или гниении биомассы выделяется тепло. При сжигании биомассы в кислороде выход тепла составляет 16 МДж/кг или 4,4 кВт·час на 1 кг сухого веса.

Основными источниками биомассы являются:

· лесоразработки и отходы переработки древесины,

· сахарный тростник,

· зерновые и другие, продовольственные и технические культуры, продукция энергетического растениеводства,

· отходы животноводства (навоз),

· городские стоки, мусор (твердые бытовые отходы).

Переработка биомассы, связанная с извлечением энергии осуществляется термохимическими, биохимическими и агрохимическими способами. Термохимические способы – это прямое сжигание и пиролиз, биохимические – спиртовая ферментация и анаэробная переработка, агрохимические – экстракция топлив прямо от живых растений (например, получение каучука).

Сжигание биотоплива с получением тепла используется для приготовления пищи, обогрева жилищ, для сушки зерна, получения электроэнергии и т.д.

Приготовление пищи и сжигание топлива в традиционных, часто примитивных "устройствах" – неэффективно. Их К.П.Д. часто не превышает 5%. Велики потери из–за неполного сгорания, уноса тепла ветром, испарения из открытого котла и т. д. Процесс можно улучшить совершенствованием методов приготовления (например, паровые сковородки), уменьшением тепловых потерь (теплоизоляция печей, конструкция нагревателей), улучшением сгораемости топочных газов, применением простых и надёжных методов управления нагревателями. Применение древесного угля, принудительной подачи воздуха позволяет повысить эффективность плит и печей до 50%.

Другие направления по совершенствованию процесса сжигания биотоплива – это применение в качестве топлива печей биогаза, использование солнечных кухонь.

В этих процессах в качестве биотоплива широко применяется древесина. Древесину можно считать возобновляемым источником энергии только при условии, что скорость её прироста превышает скорость уничтожения.

Пиролиз (сухая перегонка) – это процессы нагрева или частичного сжигания органического сырья для получения производных топлив или химических соединений. Сырьём служит древесина, отходы биомассы, городской мусор, уголь. Продукты пиролиза – газы, смолы и масла, древесный уголь, зола. Разновидность пиролиза – газификация – предназначена для максимального получения газообразного топлива. Пиролиз осуществляется в газогенераторах. Схема газогенератора представлена на рисунке 3.1. Газогенератор состоит из следующих элементов:

1- печь, куда подается и частично сжигается при недостатке воздуха 2 перерабатываемая биомасса,

3- газопровод,

4- выход древесного угля,

5-биогаз от других печей,

6-сепаратор,

7-производные жидкости и летучие соединения (эфиры, фенолы, уксусная кислота, метанол и др.),

8-сушилка для сельскохозяйственной продукции,

9-обогрев помещений и приготовление пищи,

10-газгольдер,

11-крышка газгольдера,

12-трубопровод генераторного газа,

13-двигатель внутреннего сгорания,

14-электрический генератор.

Подаваемый материал предварительно сортируют для снижения негорючих примесей, подсушивают, измельчают. Температура в печи

 

 

Рис.3.1. Схема газогенератора

 

зависит от соотношения воздух – горючее. Проще всего управление установкой при температуре ниже 600ºС. При более высоких температурах - сложнее управление, но увеличивается содержание водорода в вырабатываемом газе.

Перегонка идёт в 4 стадии:

  • 100-120ºC подаваемый в газогенератор материал опускается вниз и освобождается от влаги,
  • 275ºC –отходящие газы в основном состоят из N2,CO и CO2; извлекается уксусная кислота и метанол,
  • 280-350ºC – начинается реакция выделения летучих химических веществ таких, как эфиры, фенолы и др.,
  • свыше 350 ºС – выделяются все типы летучих соединений, одновременно с образованием углекислого и угарного газа происходит увеличение образования водорода и метана CH4 , часть углерода сохраняется в виде древесного угля, смешанного с золой.

Топливо, полученное при пиролизе более универсально, чем исходное, но уже имеет меньшую энергию сгорания. "Универсальность" топлива – это более широкий диапазон устройств – потребителей, меньшее загрязнение среды, удобство транспортировки, лучшая управляемость горением. В результате переработки получают твёрдый остаток, жидкости, газы.

Твёрдый остаток, древесный уголь, составляет 25-35% сухой биомассы. Он на 75-85% состоит из углерода, обладает теплотой сгорания 30 МДж/кг. Используется в качестве топлива с контролируемой чистотой, применяется в лаборатории, в промышленности, для выплавки стали (вместо кокса).

Жидкости – смолы, уксусная кислота, метанол, ацетон –30% от сухой биомассы. Они могут быть отделены или использованы вместе в качестве низкокачественного топлива с теплотой сгорания 22МДж/кг.

Газы – это древесный газ (синтетический газ, генераторный газ или водяной газ) – до 80% в газогенераторах. Газы состоят из азота, водорода, метана, углекислого газа и угарного газа. Они накапливаются в газгольдерах при давлении, близком к атмосферному (они не сжимаются). Используются в дизелях, карбюраторных двигателях.

Другие термохимические процессы: - гидрогенизация и каталитическая реакция между углеродом и окисью углерода.

Гидрогенизация – процесс нагревания измельчённой или переваренной биомассы до 600ºС при давлении около 50 атм (5 МПа). Получаемые при этом горючие газы метан и этан дают при сжигании 6 МДж на 1 кг сухого сырья.

Гидрогенизация с применением СО и пара аналогична предыдущему процессу, но нагревание производится в атмосфере СО до 400ºС. Извлекается синтетическая нефть, которую можно использовать как топливо.

Каталитическая реакция между Н2 и СО при 330ºC и давлении 15 МПа даёт метиловый спирт (метанол)-ядовитую жидкость, которую можно использовать в качестве заменителя бензина с теплотой сгорания 23 МДж/кг.

Спиртовая ферментация (брожение) используется для получения этилового спирта (этанола) – С2Н5ОН. Этиловый (питьевой) спирт образуется из сахаров особыми микроорганизмами, дрожжами, в кислой среде. При концентрации спирта 10% микроорганизмы погибают. Поэтому дальнейшее повышение концентрации получается перегонкой (дистилляцией). В результате получают смесь-95%спирта + 5% воды. При брожении теряется 0,5% энергетического потенциала сахара. Необходимую для перегонки тепловую энергию получают, сжигая отходы биомассы.

Этиловый спирт получают из сахарного тростника, сахарной свёклы, крахмала. При получении спирта из сахарного тростника вначале отделяют сок для получения сахарозы. Оставшуюся патоку с содержанием сахара до 55% сбраживают и перерабатывают в спирт. Реакция превращения сахарозы в этанол в присутствии дрожжей:

При получении спирта из сахарной свёклы вначале получают сахар для сбраживания; далее процесс аналогичен.

Для получения спирта из растительного крахмала, например, из злаковых, его предварительно подвергают гидролизу на сахар.

Крупные молекулы крахмала разрушаются ферментами солода, содержащимися, например, в ячмене или при обработке его сильными кислотами при повышенном давлении. Важный вторичный продукт сбраживания - отходы используются в качестве корма для скота и удобрений.

Этиловый спирт – хорошее жидкое топливо. Он используется в чистом виде (95%) при небольшой переделке карбюратора или в смеси с бензином 1:10 (газохол). Газохол сейчас обычное топливо в Бразилии. Применяется оно и в США. При применении газохола увеличивается на 20% мощность двигателей, снижается загрязнение атмосферы по сравнению с применением тетраэтилсвинца.

Получение биогаза путём анаэробного сбраживания. В естественных условиях биомасса разлагается на элементарные соединения в условиях сырости, тепла, темноты в присутствии кислорода под действием бактерий, называемых аэробными. С участием этих бактерий углерод биомассы окисляется до двуокиси углерода (углекислого газа).

В замкнутых объёмах с недостатком кислорода развиваются анаэробные бактерии, которые способствуют созданию углекислого газа и метана. В анаэробных условиях происходит процесс «сбраживания». «Биогаз» - это смесь метана и углекислого газа. Его получают в биогазогенераторах. Реакция превращения сахарозы в метан в присутствии бактерий:

Реакция превращения целлюлозы в метан:

Эти реакции экзотермические. В процессе их протекания выделяется 1 МДж тепла на 1кг сухой массы сбраживаемого материала. Этого, однако, недостаточно для необходимого повышения температуры массы.

Анаэробное сбраживание и получение биогаза с последующим его использованием в качестве качественного топлива выгоднее, чем простое высушивание и сжигание исходного материала, так как только удаление 95% влаги при сушке требует до 40 МДж тепла на 1кг сухого остатка. Теплота сгорания сухого навоза составляет 12…15 МДж/кг. Кроме того, после анаэробной переработки навоз может быть использован как удобрение.

Получение биогаза – экономически выгодно, если биогазогенератор работает на переработке существующего потока отходов - (стоки канализационных систем, свиноферм и др.) без их специального сбора, например, в замкнутом экологическом цикле агропромышленного комплекса.

Сбраживание в биогазогенераторе может происходить при температуре 20…30ºС с участием псикрофилических бактерий с циклом сбраживания 14 суток. При подогреве до 35ºС в процессе участвуют мезофилические бактерии и процесс ускоряется до 7 суток. Для подогрева используется часть биогаза, получаемого в биогазогенераторе. При необходимости ускорения разложения биомассы без увеличения выхода биогаза массу подогревают до 55ºС, что соответствует термофилическому уровню анаэробных бактерий. В любом случае необходимо поддерживать в биогазогенераторе стабильные условия по температуре и подаче биомассы для выведения подходящих для данных условий популяций бактерий.. В тропиках сбраживание ведётся при 20-30ºС без дополнительного подогрева, с временным интервалом 14 дней. В средней полосе для сбраживания необходим дополнительный подогрев, например, с использованием части получаемого биогаза. При повышении температуры процесса до 35ºС, скорость реакции в биогазогенераторе удваивается.

Процесс сбраживания идет в три стадии, которые обеспечиваются собственными для каждой стадии бактериями:

1 стадия - расщепление нерастворимых материалов (целлюлоза, жиры, полисахариды) на углеводы и жирные кислоты в течение 1 суток при 20…25ºС,

2 стадия - образование уксусной и др. кислот в течение 1 суток,

3 стадия - образование метана, полное сбраживание массы с получением биогаза (70% метана и 30% углекислого газа) с примесью водорода и сероводорода в течение 14 суток.

Технологическая и электрическая схема биогазогенератора для условий умеренного климата для утилизации навоза животноводческого комплекса, использующего электроэнергию в качестве основного источника энергии представлена на рисунке 3.2. Здесь:

1- приемная емкость с мешалкой, куда поступает очищенный от соломы и других неактивных материалов навоз,

2- мешалка,

3- насос,

4- бак (metan tank) с мешалкой,

5- мешалка,

6- насос для перекачки навоза в баке с подогревом в зимнее время с помощью газового нагревателя,

7- газовый нагреватель,

8- насос для перекачки отработанного навоза в выходную емкость для отходов,

9- выходная емкость,

10- компрессор для перекачки получаемого биогаза в газгольдер,

11- водяной газгольдер,

12- двигатель внутреннего сгорания,

13- электрогенератор,

14- шины трансформаторной подстанции предприятия,

15- коммутирующие аппараты подстанции,

16- главный трансформатор подстанции предприятия,

17- приводные электродвигатели вытяжной и приточной вентиляции с калориферами для обогрева помещений, привода механизмов кормораздачи, скребков, а также лампы освещения.

Навоз помещают в накопитель, где он отделяется от несбраживаемых материалов. Далее масса медленно проходит через ёмкость, врытую в землю, где происходит сбраживание, а затем отработанная масса поступает в бак для отработанной массы, которая используется для удобрения. Давление газа в газгольдере создаётся тяжёлым металлическим газгольдером.

Теплота сгорания некоторых видов топлива:

  • бензин 47 МДж/кг или 34·10-³ МДж/л;
  • этиловый спирт С2Н5ОН 30 МДж/кг или 25·10-³ МДж/л;
  • метан СН4 55 МДж/кг или 38·10-³ МДж/л;
  • метанол СН3ОН 23 МДж/кг или 18·10-³ МДж/л;
  • биогаз (50% СН4 и 50% СО2) 28 МДж/кг или 20·10-³ МДж/л;
  • генераторный газ 5-10 МДж/кг или (4-8)·10-³ МДж/л;
  • древесный уголь (кусковой) 32 МДж/кг;
  • коровий навоз 12 МДж/кг;
  • древесина сухая 16 МДж/кг.

 

Рис.4.2. Схема биогазогенератора.

 

ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ.

 

Внутренняя структура Земли, рис.4.1 содержит: 1- раскалённое внутреннее ядро, 2- наружное ядро, 3- мантию и 4- тонкую толщиной 30 км кору Земли.

Земная кора получает тепло от раскалённого до 4000ºС ядра, где происходят ядерные и химические реакции с выделением огромного количества тепла. Разность температур между внешней и внутренней поверхностями коры около 1000ºС. Кора состоит из твёрдых пород и имеет невысокую теплопроводность. Геотермальный поток 5 через неё в среднем 0,06Вт/м² при температурном градиенте 30ºС/км. Выход тепла через твёрдые породы суши и океанского дна происходит за счёт теплопроводности (геотермальное тепло) и в виде конвективных потоков расплавленной магмы или горячей воды.

В районах с повышенными градиентами температуры эти потоки составляют 10-20Вт/м² и там могут быть созданы геотермальные энергетические (электрические) станции (Гео ТЭС).

Температурный градиент повышается в зонах с плохо проводящими тепло или насыщенными водой породами. Особенно высокое тепловое взаимодействие мантии с корой наблюдается по границам материковых платформ. В этих районах велик потенциал геотермальной энергии. Градиент температуры достигает 100ºС/км. Это районы с повышенной сейсмичностью, с вулканами, гейзерами, горячими ключами. Такими районами являются: Камчатка в России, Калифорния (Сакраменто) в США, а также зоны в Новой Зеландии, Италии, Мексике, Японии, Филиппинах, Сальвадоре, Исландии и других странах.

Сведения о геотермальных структурах получают при геологической съёмке, проходке шахт, скважин (при глубоком бурении –6 км и более). Технология бурения скважин до 15 км остаётся такой же как и до 6 км, поэтому при строительстве Гео ТЭС эта проблема может считаться решённой.

Геотермальные районы подразделяют на 3 класса:

гипертермальные с температурным градиентом более 80ºС/км - расположены в зонах вблизи границ континентальных платформ –Тоскана в Италии;

полутермальные –40¸80ºС/км – расположены вдали от границ платформ, но связаны с аномалиями, например, глубокими естественными водоносными пластами или раздробленными сухими породами – район Парижа;

нормальные – менее 40ºС/км, где тепловые потоки составляют

 

 

Рис.4.1. Внутренняя структура Земли и поток геотермальной энергии

 

 

Рис.4.2. Использование потока геотермальной энергии

 

0,06 Вт/м². В этих районах извлечение геотермального тепла – пока нецелесообразно.

Тепло получается благодаря: (1)естественной гидротермальной циркуляции, при которой вода проникает в глубокие слои, нагревается, превращается в сухой пар, пароводяную смесь или просто нагревается и образует гейзеры, горячие источники, (2)искусственному перегреву, связанному с охлаждением застывающей лавы, (3)охлаждению сухих скальных пород. Сухие скальные породы в течении миллионов лет накапливали тепло. Отбор тепла от них возможен прокачкой воды через искусственно созданные разрывы, скважины и др.

Созданные Гео ТЭС работают на естественной гидротермальной циркуляции, а также на искусственном перегреве за счёт извлечения тепла из сухих скальных пород.

Геотермальная энергия обладает низкими термодинамическими свойствами. Это энергия низкого качества(35%) и низкой плотности(0,06Вт/м²), с низкой температурой теплоносителя. Наилучший способ её использования – комбинированное применение для обогрева и выработки электроэнергии. При потребности в тепле с температурой до 100ºС целесообразно её использовать только для обогрева, если температура теплоносителя ниже 150ºС. При температуре теплоносителя 300ºС и выше целесообразно её комбинированное использование. Тепло целесообразно использовать вблизи места добычи, для обогрева жилищ и промышленных зданий, особенно в зонах холодного климата. Такие геотермальные системы используются, например, в Исландии. Тепло также используется для обогрева теплиц, сушки пищевых продуктов и т.д. Применение геотермальной энергии определяется капитальными затратами на сооружение скважин. Их стоимость экспоненциально возрастает с увеличением глубины бурения.

Общее количество тепла, извлекаемого от теплоносителя, может быть увеличено за счёт повторной закачки в скважины, тем более, что нежелательно оставлять на поверхности эти сильно минерализованные воды по экологическим причинам. Геотермальные энергостанции располагаются в гипертермальных районах, рис.4.2, вблизи естественных гейзеров и пароводяных источников 1 с температурой воды и пара 200…280ºС и используют естественные выходы тепла 2 (энергостанция 3) и специально пробуренные скважины 4 (энергостанция 5).

Схема извлечения тепла из сухих горных пород включает нагнетательную 1 и водозаборную 2 скважины, рис.4.3.. Скала на глубине 5-7 км дробиться гидровзрывом с помощью холодной воды, нагнетаемой под давлением в скважину. После предварительного дробления пород вода нагнетается через нагнетательную скважину, фильтруется через скальные породы на глубине 5 км при tº=250ºС, тёплая вода возвращается на поверхность через водозаборную скважину.

 

Рис.4.3. Схема извлечения тепла из сухих горных пород

 

Рис.4.4.Использование геотермальной энергии для производства электроэнергии в тепловом двигателе с одним рабочим телом (с

водой или фреоном)

 

Использование геотермальной энергии для производства электроэнергии может быть произведено по различным схемам:

· Турбинный цикл с одним рабочим телом с водой или хладоном показан на рис.4.4, где: П- теплообменник (парогенератор), где геотермальное тепло передается хладону, нагревает и испаряет его, Т- турбина, Г-генератор, К- конденсатор, Н- насос. При использовании низкотемпературного геотермального источника для приведения в действие турбины вместо воды применяют жидкости с более низкой температурой парообразования, например, хладон или аммиак. Особые трудности возникают с теплообменниками из–за высокой концентрации химических веществ в воде из скважин.

· Схема прямого парового цикла, рис.4.5, содержит: пароводяной сепаратор- ПС, редуктор- Р, Т- турбину, Г-генератор, К- конденсатор, Н- насос. Вода с паром от геотермального источника подается в пароводяной сепаратор, где пар отделяется от воды и поступает в турбину. Вода возвращается под землю. Отработанный в турбине пар конденсируется, и конденсат также закачивается под землю.

 

Крупнейшие геотермальные электростанции:

ЭНЕРГИЯ ОКЕАНОВ.

 

Энергия океанов – это энергия волн, энергия приливов и тепловая энергия воды.

Энергия волн.

Мощность, переносимая волнами на глубокой воде, пропорциональна квадрату их амплитуды и периоду. Длиннопериодные волны (Т≈10 с) с большой амплитудой (А≈2 м) позволяют снимать с единицы длины гребня до 50 кВт/м.

Проекты использования энергии волн разрабатываются в Японии, Великобритании, в Скандинавских странах. Разрабатываются объекты с единичными модулями 1000 кВт с длиной вдоль фронта волны около 50 м. Такие установки могут быть конкурентоспособны с дизель–генераторами при электроснабжении удаленных посёлков на островах.

Сложности создания волновых энергоустановок обусловлены нерегулярностью волн по амплитуде, частоте, направлению, возможностью 100-кратных перегрузок при штормах и ураганах, расположением на глубокой воде, вдали от берега, сложностью согласования низкой частоты волн (0,1Гц) и высокой частоты электрического генератора (50 Гц).

Волновая энергоустановка 1, использующая колеблющийся водяной столб, рис.5.1, размещается на грунте. Она состоит из нижней вертикальной камеры 2, сообщающейся с морем и имеющей два отверстия с клапанами 4 и 7, и воздушной камеры 3 с двумя отверстиями с клапанами 5 и 6, с диффузором и турбиной 8,соединенной валом с электрическим генератором 9.

При набегании волны на частично погруженную полость, открытую под водой, столб воды в полости колеблется, и изменяет давление воздуха над жидкостью. С помощью клапанов воздушный поток регулируется так, что проходит через турбину в одном направлении. При набегании волны воздушный поток из нижней камеры под давлением проходит через клапан 4 в верхнюю камеру, через диффузор, приводит во вращение турбину и выходит наружу через клапан 5. При сбегании волны клапаны 4 и 5 закрыты. Под действием разрежения, возникающего в нижней камере, воздух засасывается снаружи в верхнюю камеру, проходит через диффузор в прежнем направлении и через клапан 7 проходит в нижнюю камеру. На этом принципе действуют энергоустановки, внедрённые в Японии, Великобритании, Норвегии (500 кВт).

 

Рис.5.1. Волновая энергоустановка

 

Возможны другие конструкции энергоустановок, например, подводное устройство, которое состоит из плавучего корпуса – поплавка, закреплённого под водой на опорах, установленных на

грунте. Под воздействием подповерхностного движения вод он совершает колебательные движения, которые преобразуются в движение поршневого насоса. Жидкость подаётся на генераторную станцию по трубопроводам.

 

Энергия приливов.

Приливные колебания уровня в океанах происходят периодически: суточные с периодом 24 часа 50 минут и полусуточные с периодом 12 часов 25 минут. Разность уровней самого высокого и самого низкого – это высота прилива. Она колеблется от 0,5 до 10-11 метров. Во время приливов и отливов возникают приливные течения, скорость которых в проливах между островами достигает 4-5 м/с. Причиной возникновения приливов является гравитационное взаимодействие Земли 1 с Луной 2 и Солнцем, рис.5.2. Гравитационные же силы удерживают воду на поверхности вращающейся Земли. Плоскость вращения Луны относительно Земли имеет наклон относительно плоскости эклектики (в которой Земля вращается относительно Солнца) и дважды в течение солнечных суток Луна проходит через экваториальную плоскость.

Рис.5.2. Возникновение приливов

 

Если Луна находится в экваториальной плоскости Земли, океанские воды втягиваются в пики 3 в точках – максимально приближенной и удаленной от Луны. В ближайшей к луне точке действует увеличенная сила лунного притяжения и уменьшенная центробежная сила, в наиболее удаленной точке- уменьшенная сила лунного притяжения и увеличенная центробежная сила.

Это полусуточные приливы. Они наблюдаются в любой точке два раза в сутки. Обычно Луна не находится в экваториальной плоскости Земли. Поэтому приливы в этой точке возникают также 1 раз в сутки. Это суточные приливы.

На величину возникающих приливов оказывает влияние меняющееся расстояние между Луной и Землёй, совпадение или несовпадение Лунных и Солнечных приливов, место, в котором наблюдается прилив, открытый океан или вблизи побережья, в устьях рек и прочие.

Приливная электростанция (ПЭС) может быть расположена непосредственно в приливном течении, рис.5.3.

Рис.5.3. Приливная энергоустановка

 

Другой вариант расположения ПЭС – бассейн, отделённый от океана дамбой или плотиной. Во время прилива вода в бассейне поднимается на максимальную высоту. При отливе масса воды пропускается через турбину, вырабатывая электроэнергию.

Развитие приливной энергетики возможно в местах с большими высотами приливов и большими потенциалами приливной энергии, например, на побережье Северной Америки (9…11м), в западной Африке 5м, на побережье Белого, Баренцева морей, во Франции (Бретань), Великобритании (Северн), Ирландии, Австралии. Приливные энергоустановки характеризуются большими капитальными затратами. Капитальные затраты на строительство ПЭС могут быть снижены решением комплексных хозяйственных задач: одновременным строительством дорог вдоль дамб, улучшением условий судоходства, снижением расхода дорогого дизельного топлива и так далее.

Крупнейшие приливные электростанции:

Ла Ранс – Франция – 240.000 кВт – 24 турбины – 1967г.

Аннаполис – Канада – 20.000 кВт – 1 турбина – 1984г.

Джянгксия – Китай – 3.900 кВт – 6 турбин – 1986г.

Байсхакоу – Китай – 640 кВт – 4 турбины – 1985г.

Кислогубская – Россия – 400 кВт – 1 турбина – 1968г.

 

ГИДРОЭНЕРГЕТИКА

Гидроэнергетика использует энергию падающей воды. Эта энергия преобразуется в механическую энергию в гидротурбине и в электрическую в гидрогенераторе. Мощность, отдаваемая падающей водой турбине:

(6.1)

где:r=103 кг/м3- плотность воды,

g=9,81 м/с2- ускорение силы тяжести,

расход воды, м3/с,

высота падения воды, м.

Потери при этом преобразовании невелики и затрачиваются только на удаление воды из турбины. К.П.Д. современных гидротурбин достигает 90%.

При определении гидроэнергетического потенциала местности, района, области годовая выработка электроэнергии ГЭС может составить

(6.2)

  • где сток выпадающих осадков в реки, %, и реки, на которых возможно строительство плотин, %, соответственно,
  • перепад высот, минимальной над уровнем моря и расчетной, расположенной на высоте 100…300 м над ней, м,
  • -КПД турбины и генератора,
  • годовой сток с расчетной площади,

(6.3)

  • расчетная площадь территории, расположенной на высоте 100…300м над минимальной высотой,
  • годовое количество осадков, м,

Условиями целесообразности использования гидроэнергии в данной местности являются:

  • достаточно большой годовой сток и перепад высот не менее 250…300м; при меньшем перепаде высот нерационально возрастают площади залива территории при создании водохранилищ,
  • годовой уровень осадков не менее 0,4 м,
  • равномерное распределением осадков в течение года,

подходящий рельеф местности и наличие мест для водохранилищ.

Гидротурбины разделяются на реактивные и активные.

Рабочее колесо реактивной турбины полностью погружено в воду и вращается за счет разности давлений до и после колеса, рис.6.1. Здесь: 1- русло реки, 2- естественный водопад, 3- решетка, 4- водовод (канал), 5- направляющий аппарат, 6- гидротурбина, 7- гидрогенератор в здании ГЭС.

 

Рис.6.1. Деривационная гидроэлектростанция с реактивной гидротурбиной вблизи естественного водопада.

 

Реактивная турбина может работать при рев







Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.