Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Классификация рецепторов. Общие свойства рецепторов.





Рецептор-это спец.образование или спец.неравная клетка, которая принимает действие раздражителя и преобразует энергию этого раздражителя в электр. Потенциал. В зависимости от локализации различают следующие виды нервных окончаний - рецепторов:экстерорецепторы воспринимают раздражение факторов внешней среды. Они расположены в наружных покровах тела, в коже и слизистых оболочках, в органах чувств; интерорецепторы получают раздражение главным образом при изменении химического состава внутренней среды (хеморецепторы), давление в тканях и органах (бароре­цепторы, механорецепторы);проприорецепторы, или проприоцепторы, воспринимают раздражение в тканях собственно тела. Они имеются в мышцах, сухожилиях, связках, фасциях, суставных капсу­лах. В соответствии с функцией выделяют терморецепторы, ме­ханорецепторы и ноцирецепторы. Первые воспринимают измене­ния температуры, вторые - различные виды механических воз­действий (прикосновение к коже, ее сдавление), третьи - боле­вые раздражения.Среди нервных окончаний различают свободные, ли­шенные глиальных клеток, и несвободные, у которых нервные окончания имеют оболочку - капсулу, образованную клетками нейроглии или соединительнотканными элементами. Свойства: Адекватность-каждый рецептор возбуждается при действии своего аздражителя, к которому привык.Адаптация – приспособление, привыкание рецептора к длительное дйствующему раздражителю.

Высокая возбудимость - рецепторы действуют по закону силы возбудимости. Чем больше сила рецептора, тем больше генераторная сила возбудимости.Флюктуация-т.е.у рецептора колеблется мембранный потенциал.

 

5. Механизм регуляции функций организм. Организм - сложная саморегулирующаяся система, состоящая из клеток, тканей, органов. Они в свою очередь образуют физиологические системы, которые выполняют комплекс однородных функций. Все органы этих систем имеют единые механизмы регуляции. Согласованную деятельность различных систем, поддержание гомеостаза, обеспечивает нервная и гуморальная регуляция организма.

В организме выделяют 2 системы регуляции: нервную и гуморальную Особенности нервной регуляции:

1. большая скорость регулирующего воздействия, импульсы по Рефлекторной дуге распространяются быстро; 2. нервное волокно, идущее от нервного центра, заканчивается строго на определенном органе или эффекторе. Возможен быстрый самоконтроль и саморегуляция за счет нейрона обратной связи. Точный адресат.

6. Гуморальная регуляция, характеристика и классификация физиологически активных веществ. Взаимоотношение нервных и гуморальных механизмов регуляции.

Все функции организма регулируются с помощью двух систем регуляции: гуморальной и нервной. Гуморальная регуляция-для передачи информации использует жидкие среды организма. (кровь, лимфу и т.д) Сигналы передаются посредством хим.веществ, медиаторов, БАВ, электролитами. Физиологически активными веществами гуморальной регуляции являются: 1.Неорганические метаболиты и ионы. (Ca. Na. H)2.Гормоны желез внутренней секреции. Это инсулин, тироксин и др..3.Местные или тканевые гормоны.(гистамин, серотонин, гормоны ЖКТ). 4.Биологически активные вещества, обеспечивающие креаторные связи между клетками ткани. Это белковые макромолекулы, выделяемые ими. Они регулируют дифференцировку, рост и развитие всех клеток составляющих ткань и обеспечивают функциональное объединение клеток в ткань. Особенности гуморальной регуляции: Не имеет точного адресата, низкая скорость доставки информации. Продолжительность действия. Нервные и гуморальные механизмы регуляции тесно связанны друг с другом. Гуморальная регуляция оказывает влияние на деятельность нервных клеток ЦНС, она в свою очередь изменяет деятельность органов. С другой стороны образование и поступление в кровь гуморальных веществ регулируется НС.

7. Принципы саморегуляции постоянства внутренней среды организма. Понятие о гомеостазе и гомеокинезе. Способность к саморегуляции - это основное свойство живых систем Оно необходимо для создания оптимальных условий взаимодействия всех элементов, составляющих организм, обеспечения его целостности. Выделяют четыре основных принципа саморегуляции: Принцип неравновесности или градиента. Биологическая сущность жизни заключается в способности живых организмов поддерживать динамическое неравновесное состояние, относительно окружающей среды. 2.Принцип замкнутости контура регулирования. Каждая живая система не просто отвечает на раздражение, но и оценивает соответствие ответной реакции действующему раздражению. 3.Принцип прогнозирования. Биологические системы способны предвидеть результаты ответных реакций на основе прошлого опыта. Принцип целостности. Для нормального функционирования живой системы требуется ее структурная целостность. Учение о гомеостазе было разработано К. Бернаром. В 1929 г. В. Кэннон показал, что способность организма к поддержанию гомеостаза является следствием систем регуляции в организме. Он же предложил термин “гомеостаз”. Постоянство внутренней среды организма (крови, лимфы, тканевой жидкости, цитоплазмы) и устойчивость физиологических функций является результатом действия гомеостатических механизмов. При нарушении гомеостаза происходит перерождение или гибель клеток. Формы гомеостаза регулируются и координируются гуморальной, нервной регуляцией, а также уровнем метаболизма. Параметры гомеостаза являются динамическими и в определенных пределах изменяются под влиянием факторов внешней среды (например, рН крови, содержание дыхательных газов и глюкозы в ней и т.д.).

Комплекс процессов, которые обеспечивают гомеостаз, называется гомеокинезом. Он осуществляется всеми тканями, органами и системами организма. Этот процесс направлен на восстановление гомеостаза, при его дисбалансе

 

 

9. Проводимость. Раздражители их виды характеристика. Возбудимые ткани обладают проводимостью. Раздражитель - это фактор внешней или внутренней среды действующий на живую ткань. Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением. Все раздражители делятся на следующие группы:По био значимости: Физ-эл.магн.волны, эл.ток. Хим-газы, хим.соед. По био значению: Адекватные-такое раздражитель, к восприятию которого данная система приспособилась.Неадекватные- не являющиеся в естественных условиях средством возбуждения данной системы, но все равно способны вызвать возбуждение. Пороговые раздражители-это миним. Сила раздражителя, необходимая для возникновения миним.возбуждения.

Подпороговые – раздражители, сила которых ниже порога возбуждения. Минимальные-Это миним.сила раздражителя вызывающая небольшой ответ ткани. Субмаксимальные, супермаксимальные-раздражители, сила которых меньше или больше максимальной.

 

10. Возбудимость, методы ее оценки. Изменения возбудимости при действии постоянного тока (аккомодация, электротон, катодическая депрессия). Возбудимость - это способность живой ткани отвечать на раздражение активной специфической реакцией - возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Впервые закономерности действия постоянного тока на нерв нервно-мышечного препарата исследовал в 19 веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под катодом возбудимость повышается, а под анодом снижается. Это называется законом действия постоянного тока. Изменение возбудимости ткани под действием постоянного тока в области анода или катода называется физиологическим электротоном. Под действием отрицательного электрода - катода потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном. Под положительным - анодом, он возрастает. Возникает физический анэлектртон. Постоянный ток широко используется в клинике для лечения и диагностики: ионофорез и гальванизация. Аккомодация-приспособление ткани к действию медленно нарастающего раздражителя.

 

11. Строение и функции цитоплазматической мембраны клеток. Ионные каналы мембран. Их классификация. Мембранный потенциал, механизмы его происхождения. Методы регистрации. ЦПМ- состоит из трех слоев: наружного белкового, среднего бимолекулярного слоя липидов и внутреннего белкового. Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами, погруженными в них.. Белки представлены в основном гликопротеинами. Различают интегральные белки. ериферическими белками являются хеморецепторы Наружной поверхности мембраны. Функции мембраны: Обеспечивает целостность клетки, как структурной единицы ткани. Осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью. Обеспечивает активный транспорт ионов и других веществ в клетку и из нее. Производит восприятие и переработку информации поступающей к клетке в виде химических и электрических сигналов. Ионные каналы - это трансмембранные белковые структуры, пронизывающие клеточную мембрану в виде нескольких петель и образующие в мембране пору Канальные белки состоят из субъединиц, образующих структуру со сложной пространственной конфигурацией, в которой кроме поры имеются молекулярные системы: открытия, закрытия, избирательности, инактивации, рецепции и регуляции. Все ионные каналы подразделяются на: Селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов. Малоселективные, неспецифические, не имеющие определенной ионной избирательности. Калиевые, б) натриевыев) кальциевые г) хлорныеа) быстроинактивирующиеся, т.е. быстро переходящие в закрытое состояние.. медленноинактирующиеся.. а) потенциалзависимые, т.е. те которые открываются при определенном уровне потенциала мембраны.б) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки ФАВ(нейромедиаторов, гормонов и т. д). Англ физиолог Донанн установил, что разность потенциалов внутри клетки и вне ее, т.е. потенциала покоя, близка к калиевому равновесному потенциалу. Это потенциал, образуется на полупроницаемой мембране разделяющий растворы с разной концентрацией ионов калия. Экспериментально механизмы возникновения разности потенциалов между внеклеточной жидкостью и цитоплазмой установили Ходжкин и Хаксли. Они исследовали нервное волокно кальмара и обнаружили, что внутри клеток имеется избыток калия, а вне их натрия и кальция.. В состоянии покоя открыты только калиевые каналы и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет неспецифических каналов. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Там их удерживает электрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов.

Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих ионов из клетки. Натрий-калиевый насос - это фермент натрий-калиевая АТФ-аза. Он расщепляет АТФ и использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неё. За один цикл каждая молекула натрий-калиевой АТФ-азы выводит 3 иона натрия и вносит 2 иона калия. Механизмы транспорта; 1.Активный транспорт. Он осуществляется с помощью энергии АТФ. 2.Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии.3.Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии..Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, стеклянный микроэлектрод. Он заполняется солевым раствором. Второй электрод помещается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец.

 

 

12. Потенциал действия, его фазы и механизмы генерации. Соотношение фаз возбудимости с фазами потенциала действия. Исследования Ходжкина и Хаксли показали, что при возбуждении аксона кальмара возникает быстрое колебание мембранного потенциала, которое на экране осциллографа имело форму пика. Они назвали это колебание потенциалом действия (ПД). Так как электрический ток для возбудимых мембран является адекватным раздражителем, ПД можно вызвать, поместив на наружную поверхность мембраны катод, а внутреннюю анод. При токе пороговой силы МП снижается до критического уровня деполяризации (КУД), при котором начинается генерация потенциала действия.

На кривой потенциала действия выделяют следующие фазы:

1.Локальный ответ (местная деполяризация), предшествующий развитию ПД.2.Фаза деполяризации. Во время этой фазы МП быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше 0. Поэтому мембрана приобретает противоположный заряд - внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. 3.Фаза реполяризации. Она начинается при достижении определенного уровня МП. 4.Фаза следовой деполяризации. Период, когда возвращение МП к потенциалу покоя временно задерживается..5.Фаза следовой гиперполяризации или следового положительного потенциала. В эту фазу, МП на некоторое время становится выше исходного уровня ПП. Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота натриевых каналов открываются и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы. Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия сила концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко усиливается выход ионов калия. В некоторых клетках это происходит из-за активации специальных каналов калиевого выходящего тока. Этот ток, направленный из клетки, служит для быстрого смещения МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов остается открытой.

Следовая гиперполяризация связана с повышенной, после ПД, калиевой проводимостью мембраны и тем, что более активно работает натрий-калиевый насос. Изменяя проводимость быстрых натриевых и калиевых каналов можно влиять на генерацию ПД, а следовательно на возбуждение клеток. Это используется в клинике.Чем выше скорость распространения ПД по мембране клетки, ткани, тем выше ее проводимость. Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением.В фазу реполяризации ПД, когда открываются все натриевые каналы и ионы натрия лавинообразно устремляются в клетку, никакой даже сверхсильный раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной невозбудимости или абсолютной рефрактерности. В фазе реполяризации все большая часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной невозбудимости или относительной рефрактерности. Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение клетки. Следовательно в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она находится в фазе субнормальной возбудимости.

 

13. Физиологические свойства мышц. Типы мышечных сокращений. Закон силы.

К основным функциональным свойствам мышечной ткани относятся возбудимость, сократимость, растяжимость, эластичность и пластичность.При сближении актиновых и миозиновых фибрилл вследствие замыкания поперечных мостиков в мышечном волокне развивается напряжение (активная механическая тяга). В зависимости от условий развивающееся напряжение реализуется по разному. Различают два основных типа мышечных сокращений — изотонический и изометрический.Когда мышца при раздражении сокращается, не поднимая никакого груза, происходит укорочение мышечных волокон, но их напряжение не меняется и равно нулю, такое сокращение называют изотоническим.Изометрическое — это сокращение, при котором длина волокон не уменьшается, но их напряжение возрастает (сокращение при неизменной длине).

В естественных условиях деятельности мышц практически не встречается чисто изотоническое или чисто изометрическое сокращение.Смешанный тип сокращения мышц, при котором изменяются длина и напряжение, называется ауксотоническим.Одиночное мышечное волокно, как и любая возбудимая клетка, реагирует на раздражение по закону "все или ничего". Мышца подчиняется закону силы. При увеличении силы раздражения, амплитуда сокращения ее растет. При определенной (оптимальной) силе амплитуда становится максимальной. Если же и дальше повышать силу раздражения, амплитуда сокращения не увеличивается и даже уменьшается за счет катодической депрессии. Такая сила будет пессимальной.

 

14. Ультраструктура мышечного волокна. Современная теория мышечного сокращения и расслабления. Энергетика мышечного сокращения. Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон.

Скелетные мышцы состоят из мышечных пучков, образованных большим количеством мышечных волокон. Оно имеет клеточную мембрану - сарколемму. В саркоплазме находится несколько ядер, митохондрии, образования саркоплазматического ретикулума (СР) и сократительные элементы - миофибриллы. Саркоплазматический ретикулум имеет своеобразное строение. Он состоит из системы поперечных, продольных трубочек и цистерн. Поперечные трубочки это впячивания саркоплазмы внутрь клетки. К ним примыкают продольные трубочки с цистернами. Благодаря этому, потенциал действия может распространятся от сарколеммы на систему саркоплазматического ретикулума. В мышечном волокне содержится более 1000 миофибрилл, расположенных вдоль него. Каждая миофибрилла состоит из 2500 протофибрилл или миофиламентов. Это нити сократительных белков актина и миозина. Миозиновые протофибриллы толстые, актиновые тонкие.На миозиновых нитях расположены отходящие под углом поперечные отростки с головками. У скелетного мышечного волокна при световой микроскопии видна поперечная исчерченность. Темные полосы называют А-дисками или анизотропными, светлые I-дисками (изотропными). В А-дисках сосредоточены нити миозина, обладающие анизотропией и поэтому имеющие темный цвет. I-диски образованы нитями актина. В центре I-дисков видна тонкая Z-пластинка. К ней прикрепляются актиновые протофибриллы. Участок миофибриллы между двумя Z-пластинками называется саркомером. Это структурный элемент миофибрилл. В покое толстые миозиновые нити лишь на небольшое расстояние входят в промежутки между актиновыми. Поэтому в средней части А-диска имеется более светлая Н-зона, где нет актиновых нитей. При электронной микроскопии в ее центре видна очень тонкая М-линия. Она образована цепями опорных белков, к которым крепятся миозиновые протофибриллы.

Источником энергии для сокращения и расслабления служит АТФ. Для расслабления также нужна энергия АТФ. После смерти содержание АТФ в клетках быстро снижается и когда становится ниже критического, поперечные мостики миозина не могут отсоединиться от актиновых. Возникает трупное окоченение. АТФ необходима для расслабления потому, что обеспечивает работу Са-насоса.Источником энергии для сокращения и расслабления служит АТФ. На головках миозина есть каталитические центры, расщепляющие АТФ до АДФ и неорганического фосфата. При каждом цикле взаимодействия актина с головкой миозином расщепляется 1 молекула АТФ. Однако запасы АТФ в клетке ограничены. Поэтому для восполнения запасов АТФ происходит его восстановление - ресинтез. Он осуществляется анаэробным и аэробным путем. Процесс анаэробного ресинтеза осуществляется фосфагенной и гликолитической системами. Первая использует для восстановления АТФ запасы креатинфосфата. Он расщепляется на креатин и фосфат, который с помощью ферментов переносится на АДФ (АДФ+Ф=АТФ).Фосфагенная система ресинтеза обеспечивает наибольшую мощность сокращения, но в связи с малым количеством креатинфосфата в клетке, она функционирует лишь 5-6 секунд сокращения. Гликолитическая система использует для ресинтеза АТФ анаэробное расщепление глюкозы (гликогена) до молочной кислоты. Каждая молекула глюкозы обеспечивает восстановление трех молекул АТФ. Энергетические возможности этой системы выше, чем фосфагенной, но и она может служить источником энергии сокращения лишь 0,5 - 2 мин. При этом работа гликолитической системы сопровождается накоплением в мышцах молочной кислоты и снижением содержания кислорода. При продолжительной работе, с усилением кровообращения, ресинтез АТФ начинает осуществляться аэробным путем. Процесс происходит за счет окисления углеводов и жиров. Для расслабления также нужна энергия АТФ. После смерти содержание АТФ в клетках быстро снижается и когда становится ниже критического, поперечные мостики миозина не могут отсоединиться от актиновых нитей. Возникает трупное окоченение. АТФ необходима для расслабления потому, что обеспечивает работу Са-насоса.

 

15. Одиночное мышечное сокращение и его фазы. Суммация сокращений. Тетанус, виды тетануса.. Оптимум и пессимум частоты и силы раздражения. При нанесении на двигательный нерв или мышцу одиночного порогового или сверхпорогового раздражения, возникает одиночное сокращение. При его графической регистрации можно выделить три последовательных периода:1.Латентный период. Это время от момента нанесения раздражения до начала сокращения. Его длительность около 1-2 мсек. Во время латентного периода генерируется и распространяется ПД, происходит высвобождения кальция из СР, и т.д. 2.Период укорочения. В зависимости от типа мышцы (быстрая или медленная) его продолжительность от 10 до 100 мсек.,3.Период расслабления. Его длительность несколько больше, чем укорочения. В режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. Суммация это сложение 2-х последовательных сокращений при нанесении на нее 2-х пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения, но больше продолжительности рефрактерного периода. Различают 2 вида суммации: полную и неполную. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда он уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления. Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить. Тетанус- это длительное сокращение мышцы, возникающее в результате суммации нескольких одиночных сокращений, развивающихся при нанесении на нее ряда последовательных раздражений. Различают 2 формы тетануса: зубчатый и гладкий. Зубчатый тетанус наблюдается в том случае, если каждое последующее раздражение действует на мышцу, когда она уже начала расслабляться. Т.е. наблюдается неполная суммация (рис). Гладкий тетанус возникает тогда, когда каждое последующее раздражение наносится в конце периода укорочения. Т.е. имеет место полная суммация отдельных сокращений. Амплитуда гладкого тетануса больше, чем зубчатого. В норме мышцы человека сокращаются в режиме гладкого тетануса. Зубчатый возникает при патологии, например тремор рук при алкогольной интоксикации и болезни Паркинсона.
Если постепенно увеличивать частоту раздражения, то амплитуда тетанического сокращения растет. При определенной частоте она станет максимальной. Эта частота называется оптимальной. Дальнейшее увеличение частоты раздражения сопровождается снижением силы тетанического сокращения. Частота, при которой начинается снижение амплитуды сокращения, называется пессимальной. При очень высокой частоте раздражения мышца не сокращается (рис.). Понятие оптимальной и пессимальной частот предложил Н.Е.Введенский. Он установил, что каждое раздражение пороговой или сверхпороговой силы, вызывая сокращение, одновременно изменяет возбудимость мышцы. Поэтому при постепенном увеличении частоты раздражения, действие импульсов все больше сдвигаются к началу периода расслабления, т.е. фазе экзальтации. При оптимальной частоте все импульсы действуют на мышцу в фазе экзальтации, т.е. повышенной возбудимости. Поэтому амплитуда тетануса максимальна. При дальнейшем увеличении частоты раздражения, все большее количество импульсов воздействуют на мышцу, находящуюся в фазе рефрактерности. Амплитуда тетануса уменьшается. Одиночное мышечное волокно, как и любая возбудимая клетка, реагирует на раздражение по закону "все или ничего". Мышца подчиняется закону силы. При увеличении силы раздражения, амплитуда сокращения ее растет. При определенной (оптимальной) силе амплитуда становится максимальной. Если же и дальше повышать силу раздражения, амплитуда сокращения не увеличивается и даже уменьшается за счет катодической депрессии. Такая сила будет пессимальной. Подобная реакция мышцы объясняется тем, что она состоит из волокон разной возбудимости, поэтому увеличение силы раздражения сопровождается возбуждением все большего их числа. При оптимальной силе все волокна вовлекаются в сокращение. Катодическая депрессия - это снижение возбудимости под действием деполяризующего тока - катода, большой силы или длительности.

16-17. Сила и работа мышц. Утомление мышц. Двигательные единицы, их классификация. Особенности строения и функционирования гладких мышц.

Различают следующие режимы мышечного сокращения:

1.Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.2.Изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в основе статической работы, например при поддержании позы тела.

3.Ауксотонические сокращения. Изменяются и длина и тонус мышцы. С помощью их происходит передвижение тела, другие двигательные акты. Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. Она зависит от строения мышцы, ее функционального состояния, исходной длины, пола, возраста, степени тренированности человека. В зависимости от строения, выделяют мышцы с параллельными волокнами (например портняжная), веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения. Это сумма площадей поперечного сечения всех мышечных волокон, образующих мышцу. При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании она также увеличивается, а охлаждении снижается. Сила мышц снижается при утомлении, нарушениях метаболизма и т.д..Максимальная сила различных мышечных групп определяется динамометрами, кистевым, становым и т.д. Для сравнения силы различных мышц определяют их удельную или абсолютную силу. Она равна максимальной, деленной на кв. см. площади поперечного сечения мышцы. Работу мышц делят на динамическую и статическую Динамическая выполняется при перемещении груза. При динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотоническом режиме. При статической работе мышца работает в изометрическом режиме. Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А = Р * h). Работа измеряется в кГ.М, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается. Такое же влияние на величину работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в расчете величины рабочей нагрузки имеет определение мощности мышцы. Это работа выполняемая в единицу времени (Р = А * Т). Вт. Утомление мышц. Двигательные единицы, их классификация. Особенности строения и функционирования гладких мышц. Утомление - это временное снижение работоспособности мышц в результате работы. Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, но снижается амплитуда. Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях полного расслабления не наступает. Развивается контрактура. Это состояние длительного непроизвольного сокращения мышцы. Работа и утомление мышц исследуются с помощью эргографии.В прошлом веке было предложено 3 теории мышечного утомления.1.Теория Шиффа: утомление является следствием истощения энергетических запасов в мышце.2.Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена.3.Теория Ферворна: утомление объясняется недостатком кислорода в мышце.эти факторы способствуют утомлению в экспериментах на изолированных мышцах. Однако в организме интенсивно работающие мышцы получают необходимый кислород, вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежит нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным. В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов, и угнетением синаптической ередачи.Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек, образующие контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Все ДЕ делятся на 3 группы:Медленные неутомляемые. Они образованы "красными" мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращений таких волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример - камбаловидная мышца. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются (фазные). Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза.Быстрые, устойчивые к утомлению. Занимают промежуточное положение. Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. Гладкие мышцы образованы клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной исчерченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением - нексусами, что обеспечивает распространение возбуждения по всей гладкомышечной структуре. Возбудимость и проводимость гладких мышц ниже, чем скелетных.

Мембранный потенциал составляет 40-60 мВ, так как мембрана ГМК имеет относительно высокую проницаемость для ионов натрия. Причем у многих гладких мышц МП не постоянен. Он периодически уменьшается и вновь возвращается к исходному уровню (медленными волны) (МВ). Когда вершина медленные волны достигает критического уровня деполяризации, на ней начинают генерироваться потенциалы действия, сопровождающиеся сокращениями. МВ и ПД проводятся по гладким мышцам со скоростью всего от 5 до 50 см/сек. Такие гладкие мышцы обладают автоматией. За счет такой активности происходит перистальтика кишечника.Генерация ПД в ГМК обусловлена входом в них ионов кальция. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет кальция, входящего в клетку во время ПД, Опосредует связь кальция с укорочением миофибрилл важнейший клеточный белок - кальмодулин. Кривая сокращения также отличается. Латентный период, период укорочения, расслабления значительно продолжительнее, чем у скелетных мышц. Сокращение длится несколько секунд. Гладким мышцам свойственно явление пластического тонуса (способность долго находиться в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. ГМК сами являются рецепторами растяжения. При их натяжении начинают генерироваться ПД, что приводит к сокращению ГМК (миогенный механизм регуляции сократительной активности).







ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.