|
Логический файл - поименованная совокупность всех экземпляров записей заданного типа.Стр 1 из 21Следующая ⇒ Пример логического файла НАЧИСЛЕНИЕ:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Таким образом, с помощью введенных понятий можно описывать соответствующие данные. Для отображения этих понятий в современных языках программирования, предназначенных как для вычислительных задач, так и для задач обработки данных, введены новые виды данных. В алгоритмическом языке Паскаль вводится такой вид данных, как запись (RECORD) – сложная переменная с несколькими компонентами, которые могут иметь разные типы. Кроме того, доступ к компонентам записи (полям) осуществляется не по индексу, а по имени. При программировании задачи 1 на языке Паскаль логическая запись НАЧИСЛЕНИЕ представляется видом данных RECORD, набор экземпляров логических записей сотрудников представляется (логический файл) представляется «физическим» файлом, формируемым средствами языка Паскаль и операционной системы..
Salary = RECORD FIO: string; O: real; Ko: real; S: real; END;
Отметим важную специфику таких невычислительных задач. Для этих задач характерны большие объемы данных (большое количество сотрудников, большое количество производимых изделий и т. п.). Указанные данные, как правило, используются для решения задачи многократно (зарплата начисляется постоянно каждый месяц), поэтому данные должны достаточно долго храниться в памяти ЭВМ. Для длительного хранения всегда используется внешняя память. В связи с этим решение задачи 1 состоит из двух этапов. 1. Ввод исходных данных и занесение их во внешнюю память.
type Salary = RECORD FIO: string; O: real; Ko: real; S: real; END; FSalary = File of Salary; var F: FSalary; … { Ввод исходных данных } repeat write(‘Введите количество сотрудников (не более’, MaxN,’): ’); readln(N); until (N>0) AND (N<=MaxN); For I:= 1 to N do Begin Write(‘Введите фамилию сотрудника с номером ’,I,‘: ’); ReadLn(Sotr[i].FIO); Write(‘Введите оклад сотрудника с номером ’, I, ‘: ’); ReadLn(Sotr[i].O); Write(‘Введите кол-во отработанных дней сотрудника с номером ’, I, ‘: ’); ReadLn(Sotr[i].Ko); End;
{ Занесение данных во внешнюю память }
Assign(F, ‘MyFile.fsf’); Rewrite(F); For I:= 1 to N do Write(F, Sotr[i]); Close(F); … 2. Чтение исходных данных из внешней памяти, расчет начисленных сумм и вывод на печать. … { Чтение данных из внешней памяти } Assign(F, ‘MyFile.fsf’); Reset(F); For I:= 1 to N do Read(F, Sotr[i]); Close(F); { Расчет и печать начисленных сумм } For I:= 1 to N do Begin Sotr[i].S:= Sotr[i].O * Sotr[i].Ko / Kr; WriteLn(Sotr[i].FIO, ‘: ’, Sotr[i].S); End; … Представленные программы решают поставленную задачу при сделанных предположениях. Необходимые для этого данные хранятся в файле MyFile.fsf, предназначенном только для решения этой задачи. Отметим, что в этом случае описание данных включено в прикладную программу. При изменении формата записей файла необходимо изменение прикладной программы. Таким образом, программная система, решающая поставленную задачу, определяет свои собственные данные и управляет ими. Такие программные системы называются файловыми системами [2], [3].
Задача 2. Учет кадрового состава. Здесь обрабатываются сведения о сотруднике, представленные в карточке СОТРУДНИК:
Решение задачи состоит из следующих этапов: Ввод исходных данных и занесение их во внешнюю память. Чтение исходных данных из внешней памяти с целью удаления, корректировки или добавления записи. … { Чтение данных из внешней памяти } Assign(F, ‘MyFile.fsf’); Reset(F); IsFound:= False; For I:= 1 to N do Begin Read(F, Sotr); If Sotr.FIO = KeyFio Then Begin IsFound:= True; Sotr.D:= ‘Начальник отдела’; Seek(F, FilePos(F)-1); Write(F, Sotr); Break; End; If IsFound Then WriteLn(‘Корректировка успешно произведена’) Else WriteLn(‘Сотрудника ’, KeyFio, ‘не обнаружено’); Close(F); … В рассматриваемом случае задача 2 решается независимо от задачи 1.
Задача 3. Учет экономии фонда оплаты труда (ФОТ) в связи с болезнью сотрудников. Обрабатываются сведения, представленные записями ЭКОНОМИЯ ФОТ:
. Программа решения задачи 3 аналогична программе решения задачи 1. Рассмотрим типичный случай, когда все три вышеуказанные программные системы функционируют в одной организации. Отметим следующие принципиальные эксплуатационные недостатки: Информация дублируется. В трех файлах присутствуют поля FIO, O, что приводит к существенному перерасходу памяти. При внесении изменений (например, изменении фамилии) приходится вносить одно и то же значение несколько раз в разные файлы, что приводит к увеличению затрат машинного времени. Существует потенциальная возможность противоречивости данных (в один файл изменения внесены, в другой – нет).
Устранить перечисленные недостатки можно, объединив соответствующие записи и создав единую информационную базу для всех вышеназванных задач. На первый взгляд наиболее естественно объединить все записи в одну, убрав дублирующие поля. Получаем возможный вариант объединения:
Дублирование информации полностью убрано. Расход памяти минимален. Недостатки устранены. Рассмотрим, как в этом случае изменится время решения задач 1–3. Время решения задачи прямо пропорционально объему считываемых из внешней памяти данных. Обозначим Ti, li, Ni соответственно время решения, длину записи, число записей i -й задачи (i = 1, 2, 3) при использовании отдельных файлов для каждой задачи:
Ti» C* li * Ni,
где C – некоторый коэффициент пропорциональности. Обозначим Ri, d, N соответственно время решения i -й задачи (i = 1, 2, 3) при использовании файла объединенных записей, длину записи, число записей: Ri» C* d* N.
Заметим, что N 1 = N 2 = N, N 3 << N. Тогда время решения i -й задачи (i = 1, 2) при использовании объединенного файла увеличится в Ri / Ti » d / li раз. Для нашего примера время решения задач в зависимости от выбранной длины полей может изменяться в 2–3 раза. Таким образом, платой за исключение дублирования информации является увеличение времени решаемых задач. Заметим, что такое увеличение, как правило, допустимо. Время решения задачи 3 увеличится в R 3 /T 3 » d*N / l 3 *N 3 раз. Так как для данного примера N 3<< N, то R 3>> T 3. Время решения задачи 3 может увеличиться на несколько порядков, что совершенно недопустимо. Рассмотрим другой вариант построения единой информационной базы. Объединим записи задач 1 и 2, запись задачи 3 оставим отдельно. Получим два типа записей:
В этом случае дублирование остается (дублируются поля FIO, O). Но так как N 3<< N, то общий объем дублирования незначителен. Время решения задачи 1 и 2 в этом случае незначительно возрастет по сравнению с вариантом отдельных файловых систем, время решения задачи 3 такое же, как и в начальном варианте отдельного файла. Такое объединение позволяет значительно уменьшить влияние недостатков и в то же время существенно увеличивает время решения всех задач. Все три задачи можно решать, используя общую информационную базу из двух типов записей. Отметим, что два приведенных типа записей связаны друг с другом по полю FIO (находятся в некотором отношении). Отметим, что приведенные варианты интеграции не исчерпывают все возможные способы интеграции данных для приведенных задач и к вопросу выбора наилучшего варианта вернемся в последующих лекциях. Здесь очень важно, что в этом случае для решения вышеуказанных задач используется некоторый новый вид данных, формируемый на основе интеграции записей. Для описания этого вида данных вводится новое понятие «База данных» [1]. Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|