Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Расчет призматической шпонки.





Основным критерием работоспособности шпоночных соединений является прочность. Шпонки выбирают по таблицам ГОСТов в зависимости от диаметра вала, а затем соединения проверяют на прочность. Размеры шпонок и пазов подобраны так, что прочность их на срез и изгиб обеспечивается, если выполняется условие прочности на смятие, поэтому основной расчет шпоночных соединений расчет на смятие. Проверку шпонок на срез в большинстве случаев не проводят. При расчете многошпоночного соединения допускают, что нагрузка распределяется равномерно между всеми шпонками.

Рекомендуемая последовательность проектировочного расчета.

В зависимости от диаметра вала d по табл. 6 выбирают размеры шпонки b х h, а ее длину принимают на 5-10 мм меньше длины ступицы, округляя до ближайшего большего значения по стандарту (некоторые стан­дартные значения l приведены в табл. 6). После подбора шпонки соеди­нение проверяют на смятие. Напряжения смятия опреде­ляют в предположении их равномерного распределения по поверхности контакта:

где Ft=2T/d — сила, передаваемая шпонкой; Асм площадь смятия (рис. 60); .

На смятие рассчитывают выступающую из вала часть шпонки.

Следовательно,

(34)

где Т — передаваемый момент, Нмм; d — диаметр вала, мм; (ht1) — ра­бочая глубина паза, мм (см. табл. 6); l р — рабочая длина шпонки, мм (для шпонок с плоским торцом l р = l, со скругленными торцами lp = l-b; - допускаемое напряжение (для чугунных ступиц МПа, для стальных МПа).

Расчетную длину шпонки округляют до ближайшего большего размера (см. табл. 6). Длину ступицы l ст принимают на 8... 10 мм больше длины шпонки. Если длина ступицы больше величины 1,5 d, то шпоночное соединение целесообразно заменить на шлицевое или соединение с натягом.

В тех случаях, когда длина шпонки получается значительно больше длины ступицы детали, устанавливают две или три шпонки под уг­лом 180 или 120°. При расчете многошпоночного соединения допускают, что нагрузка между всеми шпонками распределяется равномерно.

Формула проектировочного расчета для определения рабочей длины l р приз­матической шпонки (шпонки со скругленными концами):

.

Для ответственных соединений призматическую шпонку проверяют на срез

(35)

где — расчетное напряжение на срез, МПа; b — ширина шпонки, мм; l р — рабочая длина шпонки, мм; — допускаемое напряжение на срез; для сталей с > 500 МПа для неравномерной (нижний предел) и спокой­ной нагрузок (верхний предел) принимают МПа.

Шлицевые соединения

Шлицевые соединения можно рассматривать как многошпоночные, в которых шпонки как бы изготовлены заодно с валом. Рабочими поверхностями являются боковые стороны зубьев. В последние годы, в связи с общим повышением напряжений в деталях машин, шлицевые соединения получили самое широкое распространение взамен шпонок. Этому способствует оснащение промышленности специальным оборудованием - шлицефрезерными и протяжными станками. Некоторые авторы называют их зубчатыми соединениями.

Шлицевые соединения образуются выступами - зубьями на валу, ходящими во впадины соответствующей формы в ступице. Вал и отверстие в ступице обрабатывают так, чтобы боковые поверхности зубьев или участки цилиндрических поверхностей (по внутреннему или наружному диаметру зубьев) плотно прилегали друг к другу. Соответственно различают шлицевые соединения с центрированием по боковым поверхностям зубьев, по внутреннему или наружному диаметру. Центрирование по диаметрам обеспечивает более высокую соосность вала и ступицы, а центрирование по боковым граням обеспечивает более равномерное распределение нагрузки по зубьям. По характеру соединения различают: неподвижные – для закрепления детали на валу; подвижные - допускающие перемещение детали вдоль вала (например, блока шестерен коробки передач станка).

В зависимости от профиля зубьев различают три основных типа соеди­нений:

- с прямобочными (рис. 61, а) зубьями - число зубьев Z = 6, 8, 10, 12;

- с эвольвентными (рис. 61, б) зубьями - число зубьев Z = 12, 16 и более;

- с треугольными (рис. 61, в) зубьями - число зубьев Z = 24, 36 и более.

Наибольшее распространение в маши­ностроении имеют прямобочные зубчатые соединения. Их применяют в неподвижных и подвижных соединениях. Стандартом предусмотрены три серии прямобочных зубчатых со­единений — легкая, средняя и тяжелая, отличающиеся одна от другой вы­сотой и числом зубьев (чаще применяют соединения с шестью—десятью зубьями).

Зубчатые соединения изготовляют из сталей с временным сопротивле­нием = 500 МПа.

По сравнению со шпоночными зубчатые соединения обладают рядом преимуществ:

1) при одинаковых габаритах опускают передачу больших вращающих моментов за счет большей поверхности контакта;

2) обеспечивают большую усталостную ипрочность вала из-за отсутствия шпоночных канавок;

3) обеспечивают лучшее центрирование соединяемых деталей и более точное направление при осевом перемещении. Эти преимущества обусловили его широкое применение в высоконагруженных машинах (станкостроении, авиастрое­нии, автотранспортной промышленности и т.д);

4) усиливают сечение вала за счёт большего момента инерции ребристого сечения по сравнению с круглым. Зубчатый вал можно рассчитывать на прочность так же, как гладкий, диаметр которого равен внутреннему диаметру зубчатого вала.

5) уменьшается число деталей соединения. Зубчатое соединение образуют две детали, шпоночное – три, четыре.

6) обеспечивается высокая надежность при динамических и реверсивных нагрузках, вследствие равномерного распределения нагрузки по зубьям.

7) уменьшается длина ступицы.

Недостатки зубчатых соединений: требуют специального оборудования для изготовления отверстий, более сложная технология изготовления, а следовательно, и более высокая стоимость.

 

80. Смазывание редукторов. Виды смазочных материалов

Основное назначение смазочных материалов - уменьшение износа трущихся деталей и снижение затрат энергии на преодоление трения. Кроме этих функций, смазочные материалы выполняют и другие: отводят тепло от трущихся деталей, предохраняют детали от коррозии, очищают поверхности трения от продуктов из­носа и других примесей, герметизируют узлы трения.

В зависимости от характера относительного перемещения поверхностей разли­чают - трение скольжение и трение качения. Сила трения качения всегда меньше силы трения скольжения, поэтому там, где это возможно, предпочтительнее приме­нять подшипники качения.

По наличию и распределению на трущихся поверхностях смазочного материала различают следующие виды трения:

- сухое, когда между трущимися поверхностями отсутствует смазочное веще­ство;

- жидкостное, при котором трущиеся поверхности полностью разделены слоем смазочного вещества;

- граничное, когда трущиеся поверхности разделены тончайшим молекулярным слоем адсорбированных на них смазочных веществ;

- полужидкостное - переходное между жидкостным и граничными видами тре­ния.







Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.