|
Линейная модель наблюдений имеет вид
Нелинейные регрессии делятся на два класса: – регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам. Например, полиномы разных степеней
равносторонние гиперболы – регрессии нелинейные по оцениваемым параметрам. Например, степенная функция показательная функция экспоненциальная функция Построение уравнения регрессии сопровождается оценкой его параметров. Для оценки параметров регрессий, линейных по параметрам, используют метод наименьших квадратов (МНК). Согласно МНК, среди всех возможных значений параметров a и b, претендующих на роль оценок параметров а и b, следует выбрать такую пару a, b, для которой
Иначе говоря, выбирается такая пара параметров a, b, для которой сумма квадратов невязок оказывается наименьшей. Для линейных и приводимых к линейным нелинейных уравнений, заданное условие приводит к системе нормальных уравнений
решая которую, имеем
где
Для любой точки (хi, уi) на диаграмме рассеяния можно записать
где Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной. Возведем обе части последнего представления в квадрат и просуммируем левые и правые части полученных для каждого из i равенств соответственно, получим
Рассмотрев сумму Тогда
Выражение (1) представляет собой разложение полной суммы квадратов на сумму квадратов, объясненную моделью, и остаточную сумму квадратов. Долю дисперсии, объясняемую регрессией в общей дисперсии результативного признака у, характеризует коэффициент (индекс) детерминации
Этот коэффициент изменяется в пределах от 0 (при
Значение Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции
где и индекс корреляции
Чем ближе значение коэффициента (или индекса) корреляции к единице, тем теснее корреляционная связь. Заметим, что коэффициент детерминации есть квадрат коэффициента или индекса корреляции. Средний коэффициент эластичности для рассматриваемой парной модели регрессии рассчитывается по формуле и показывает, на сколько процентов в среднем по совокупности изменится результативный признак у от своей средней величины при изменении факторного признака х на один процент. Бета–коэффициент показывает, на какую часть величины своего среднего квадратического отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднего квадратического отклонения и задается формулой
После того, как построено уравнение регрессии, необходимо провести оценку значимости как уравнения в целом, так и отдельных его параметров. Оценка значимости уравнения регрессии часто делается с помощью F – критерия Фишера. При этом выдвигается нулевая гипотеза Н 0 о том, что коэффициент регрессии равен нулю (b = 0) и тем самым предполагается, что фактор х не оказывает влияния на результат у. Существует равенство между числом степеней свободы общей и факторной с остаточной суммами квадратов. Имеем два соответствующих друг другу равенства
n – 1 = 1 + (n –2). Разделив каждую сумму квадратов на соответствующее ей число степеней свободы, получим средний квадрат отклонений, или дисперсию D на одну степень свободы
Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим F – критерий
Разработаны таблицы (см. приложение) критических значений F – критерия при разных уровнях существенности нулевой гипотезы и различном числе степеней свободы. Вычисленное значение F – критерия признается достоверным (отличным от единицы), если оно больше табличного (Fфакт > Fтабл,). В этом случае нулевая гипотеза Н о об отсутствии связи признаков отвергается. Если же его величина окажется меньше табличной (Fфакт < Fтабл,), то вероятность нулевой гипотезы Н о выше заданного уровня значимости g (например g = 0,05) и она не может быть отклонена без серьезного риска сделать неправильный вывод о наличии связи. В этом случае уравнение регрессии считается статистически незначимым, Н о не отклоняется. Оценка значимости уравнения регрессии обычно дается в виде таблицы 1 дисперсионного анализа Таблица 1
В линейной регрессии обычно оценивается не только уравнение в целом, но и отдельные его параметры. С этой целью по каждому из параметров определяется его стандартная ошибка: m b, m a. Стандартная ошибка коэффициента регрессии определяется по формуле
где
Для оценки существенности коэффициента регрессии его величина сравнивается с его стандартной ошибкой, т.е. определяется фактическое значение t – критерия Стьюдента Можно показать справедливость равенства Если фактическое значение t – критерия превышает табличное, то гипотезу о существенности коэффициента можно отклонить. Границы доверительного интервала коэффициента регрессии b определяются как Стандартная ошибка параметра a определяется по формуле
Процедура оценивания существенности данного параметра не отличается от рассмотренной выше для коэффициента регрессии. Вычисляется t – критерий: Границы доверительного интервала параметра a определяются как Предельная ошибка D каждого показателя имеет вид
Значимость линейного коэффициента корреляции проверяется по величине ошибки коэффициента корреляции
При этом, Данная формула свидетельствует о том, что в парной линейной регрессии Если значение Рассмотренная оценка коэффициента корреляции рекомендуется к применению при большом числе наблюдений и если r не близок к +1 или –1. Фактические значения результативного признака у отличаются от теоретических значений Величина отклонений фактических и расчетных значений результативного признака Чтобы иметь общее представление о качестве модели, из относительных отклонений по каждому наблюдению определяют среднюю ошибку аппроксимации – среднее отклонение расчетных значений от фактических
Допустимый предел значений Прогнозное значение ур определяется путем подстановки в уравнение регрессии Средняя стандартная ошибка прогноза определяется по формуле
Границы доверительного интервала прогноза определяются как
![]() ![]() Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... ![]() Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... ![]() ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... ![]() Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|