Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Сложение гармонических колебаний





Если колебательная система одновременно участвует в двух (или более) независимых колебательных движениях, возникает задача - найти результирующее колебание. В случае однонаправленных колебаний под этим понимается нахождение уравнения результирующего колебания; в случае взаимно перпендикулярных колебаний - нахождение траектории результирующего колебания.

Метод векторных диаграмм

Рассмотрим вращающийся против часовой стрелки с постоянной угловой скоростью w вектор А. Очевидно, что угол j = w t + j0 где j0 - начальный угол.

Проекции вектора А на оси координат запишутся:

Видно, что проекции вращающегося вектора на оси координат по форме совпадают с уравнением гармонических колебаний, если угловой скорости вектора сопоставить угловую частоту колебаний, а начальному углу - начальную фазу.

Проводя аналогию дальше, можно сказать, что результат сложения двух однонаправленных колебаний можно получить следующим путем: необходимо сложить два вектора, а проекции суммарного вектора на оси координат будут являться уравнениями результирующего колебания. Рассмотрим этот метод на примере сложения двух колебаний с произвольными частотами. Пусть наше тело участвует в двух совпадающих по направлению колебаниях:

Сопоставим этим колебаниям два вектора А1 и А2, вращающихся с соответствующими угловыми скоростями.

Сопоставляем колебаниям проекции векторов на ось y. Задача сложения колебаний сводится к нахождению проекции вектора А на ось y (амплитуда результирующего колебания) и угла f (фаза результирующего колебания).

Из очевидных геометрических соображений находим:

Отметим, что в общем случае сложения колебаний с разными частотами амплитуда результирующего колебания будет зависеть от времени. Если же частоты одинаковы, то , то есть зависимость от времени исчезает. На языке векторной диаграммы это означает, что складываемые векторы при своем вращении не меняют своего относительного положения. В этом случае формулы для амплитуды и фазы результирующего колебания запишутся так:

Рассмотрим сложение двух однонаправленных колебаний с неравными, но близкими частотами, то есть , и пусть для определенности . Для простоты пусть начальные фазы и амплитуды этих колебаний равны. В результате сложения двух колебаний

получим уравнение суммарного колебания:

Полученное результирующее колебание не является гармоническим (сравни с уравнением (1)); такого вида колебания носят название биений, название понятно, если посмотреть на график колебаний.

посмотреть на осциллографе

Величина, стоящая перед синусом, меняется со временем относительно медленно, так как разность частот мала. Эту величину условно называют амплитудой биений, а разность складываемых частот - частотой биений (циклической).

При сложении взаимно перпендикулярных колебаний необходимо найти уравнение траектории тела, то есть из уравнений колебаний типа x = x(t), y = y(t) исключить t и получить зависимость типа y(x).

например, сложим два колебания с одинаковыми частотами:

исключив время, получим:

В общем случае это - уравнение эллипса. При A1=A2 - окружность, при (m - целое) - отрезок прямой.

Вид траектории при сложении взаимно перпендикулярных колебаний зависит от соотношения амплитуд, частот и начальных фаз складываемых колебаний. Получающиеся кривые носят название фигур Лиссажу.

Уравнение волны

Волна, как известно, это процесс распространения колебаний в пространстве. Чтобы волна в среде могла распространяться, точки среды должны быть связаны между собой силами, способными вызвать колебания, то есть силами упругости. На рисунке 1 показан ряд таких связанных между собой точек. Если одна из точек, например точка O, начинает колебаться, то ее колебания передаются в направлении r.

Рис. 1

Пусть точка O колеблется вдоль оси X по закону

. (1)

Здесь время t отсчитывается от момента, когда точка О находилась в положении равновесия. Ее колебания передаются другим точкам не мгновенно, а с некоторой скоростью υ. Это значит, что за единицу времени колебание доходит до точки в ряду, расположенной от точки О на расстоянии, численно равном υ. Расстояние же, на которое колебание распространяется за время, равное одному периоду T колебаний, называется длиной волны λ («Физика 10», с. 81). Отсюда следует, что

или, так как , то . (1)

Любая точка в нашем ряду (см. рис. 1), как только до нее дойдет волна, начнет колебаться с той же частотой, что и точка О, то есть будет повторять эти колебания. Но повторять с некоторым запозданием — ведь до точки, находящейся от О на расстоянии r, колебание дойдет через промежуток времени, равный . Поэтому для координаты х точки на расстоянии r мы должны написать

. (2)

Уравнение (2) называется уравнением волны. Оно позволяет найти смещение х от положения равновесия любой точки (находящейся на любом расстоянии r) в любой момент времени. Для данного момента времени оно дает как бы фотографию положений всех точек ряда относительно оси X. Уравнение волны показывает, что все точки действительно совершают одинаковые колебания (все колеблются вдоль оси X, и у всех одинаковые амплитуда и частота колебаний). Неодинаковы только фазы колебаний — разность фаз колебаний двух точек, расстояние между которыми равно Δ r, составляет .

Иногда уравнение волны удобнее представить несколько иначе. Перепишем уравнение (2) в виде

.

Подставим во второй член в скобках вместо скорости волны υ равную ей величину λν, а вместо ω напишем 2 πν. Тогда получим

. (3)

Из этого выражения видно, что координата х любой точки на расстоянии r от источника волны зависит от величины , то есть от числа длин волн, укладывающихся на расстоянии r. Если, например, r = λ, то отставание по фазе будет равно 2 π, а это значит, что фаза колебаний этой точки будет такая же, как и точки О. Точно так же, если r = 2 λ, 3 λ и т. д., то сдвиг фазы будет равен 4 π, 6 π и т. д., то есть и в этом случае фазы будут одинаковыми. Таким образом, точки волны, находящиеся друг от друга на расстоянии, равном длине волны, двум длинам волн, вообще целому числу длин волн, колеблются в одинаковых фазах.

Уравнение волны (3) позволяет легко получить условия максимумов и минимумов при интерференции волн (о которых говорится в «Физике 10» на с. 94). Напомним, что вопрос об интерференции возникает тогда, когда в некоторую точку пространства приходят две волны, каждая из которых приносит в эту точку колебания. Поэтому точка, где «встретились» две волны, участвует в двух колебаниях. Результат же сложения двух колебаний зависит от разности фаз складывающихся колебаний.

Допустим, что в некоторую точку С пришли две волны, источники которых — точки А и В — отстоят от С на расстояния r 1 и r 2 (рис. 2). Тогда в точке С складываются два колебания, происходящие вдоль одной оси:

Рис. 2

Разность фаз этих колебаний равна 2л

.

Поэтому условие усиления (максимумов) имеет вид

,

где k = 0, 1, 2,..., откуда

— колебания будут усилены (то есть амплитуда сложного.колебания будет равна сумме амплитуд складываемых колебаний), если разность хода r 1r 2 волн до места «встречи» равна четному числу полуволн. Соответственно условие минимумов —

,

или

— колебания будут ослаблены (результирующая амплитуда будет равна разности амплитуд колебаний в двух волнах), если разность хода волн равна нечетному числу полуволн.

Энергия волны

Энергия электромагнитной волны. Плотность потока излучения (поверхностная)

Как отмечалось в 15.2, механические упругие волны переносят механическую энергию, электромагнитные волны тоже переносят энергию, но энергию электромагнитную. Энергия переносится в направлении распространения волны, т.е. в направлении вектора

Энергия электромагнитного поля численно равна сумме энергий его электрической и магнитной составляющих:

В теории Максвелла доказано, что средние значения электрической и магнитной составляющих энергии электромагнитного поля равны между собой:

Следовательно, энергия электромагнитной волны равна

Поэтому

Объемная плотность энергии электромагнитной волны соответственно равна

Энергия электромагнитной волны в любой области пространства изменяется периодически с течением времени (см. выше).

Интенсивность электромагнитного излучения (поверхностная плотность W потока излучения) Так как а то

Интерференция волн

Интерференция волн — взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве. Сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

При интерференции энергия волн перераспределяется в пространстве.[1] Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды результирующей волны равна сумме квадратов амплитуд накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий ее колебаний, обусловленных всеми некогерентными волнами в отдельности.

Расчет результата сложения двух сферических волн

Если в некоторой однородной и изотропной среде два точечных источника возбуждают сферические волны, то в произвольной точке пространства M может происходить наложение волн в соответствии с принципом суперпозиции (наложения): каждая точка среды, куда приходят две или несколько волн, принимает участие в колебаниях, вызванных каждой волной в отдельности. Таким образом волны не взаимодействуют друг с другом и распространяются независимо друг от друга.

Две одновременно распространяющиеся синусоидальные сферические волны и , созданные точечными источниками B1 и B2, вызовут в точке M колебание, которое, по принципу суперпозиции, описывается формулой . Согласно формуле сферической волны:

,

,

где

и – фазы распространяющихся волн

и — волновые числа ()

и — циклические частоты каждой волны

и — начальные фазы,

и — расстояния от точки М до точечных источников B1 и B2

В результирующей волне , амплитуда и фаза определяются формулами:

,

Когерентность волн

Волны и возбуждающие их источники называются когерентными, если разность фаз волн не зависит от времени. Волны и возбуждающие их источники называются некогерентными, если разность фаз волн изменяется с течением времени. Формула для разности:

, где , ,

– скорость распространения волны, одинаковая для обеих волн в данной среде. В приведенном выше выражении от времени зависит только первый член. Две синусоидальные волны когерентны, если их частоты одинаковы (), и некогерентны, если их частоты различны.

Для когерентных волн () при условии

,

.

Амплитуда результирующих колебаний в любой точке среды не зависит от времени. Косинус равен единице, а амплитуда колебаний в результирующей волне максимальна во всех точках среды, для которых , где (m-целое) или , (так как )

Величина называется геометрической разностью хода волн от их источников B1 и B2, до рассматриваемой точки среды.

Амплитуда колебаний в результирующей волне минимальна во всех точках среды, для которых

, где (m-натуральное),

или

.

При наложении когерентных волн квадрат амплитуды и энергия результирующей волны отличны от суммы квадратов амплитуд и суммы энергий накладываемых волн.

28. Свободные гармонические колебания в электрическом колебательном контуре

Среди исследований различных электрических явлений особое место занимают исследования электромагнитных колебаний. При колебательном процессе электрические физические величины (заряды, токи) периодически изменяются и процесс сопровождается взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний применяется колебательный контур — цепь, которая состоит из последовательно включенных резистора сопротивлением R, катушки индуктивностью L, и конденсатора емкостью С.

Исследуем последовательные стадии колебательного процесса в идеализированном контуре, у которого сопротивление пренебрежимо мало (R≈0). Для возбуждения колебаний в контуре конденсатор предварительно заряжают, сообщая его обкладкам заряды ±Q. Следовательно, в начальный момент времени t=0 (рис. 1а) между обкладками конденсатора появится электрическое поле, энергия которого равна Q2/(2C). Если конденсатор замкнуть на катушку индуктивности, то он начнет разряжаться, и в контуре начнет течь возрастающий со временем ток I. В результате энергия электрического поля будет падать, а энергия магнитного поля катушки (она равна (1/2)LI2) - увеличиваться.

 

Так как R≈0, то, используя закон сохранения энергии, полная энергия

поскольку полная энергия на нагревание не тратится. Поэтому в момент t=(1/4)T, когда конденсатор полностью разрядится, энергия электрического поля станет равной нулю, а энергия магнитного поля (а следовательно, и ток) достигает максимального значения (рис. 1б). Далее, начиная с этого момента ток в контуре будет уменьшаться; значит, начнет уменьшаться магнитное поле катушки, и в ней индуцируется ток, который течет (по правилу Ленца) в том же направлении, что и ток разрядки конденсатора. Далее, начнет перезаряжаться конденсатор, появится электрическое поле, которое будет стремиться ослабить ток, который в конце концов станет равным нулю, а заряд на обкладках конденсатора станет максимальным (рис. 1в). Далее те же процессы будут протекать в обратном направлении (рис. 1г) и к моменту времени t=Т система придет в первоначальное состояние (рис. 1а). После этого рассмотренный цикл разрядки и зарядки конденсатора будет повторяться. Если бы в контуре потерь энергии не было, то совершались бы периодические незатухающие колебания, т.е. периодически изменялись (колебались) бы заряд Q на обкладках конденсатора, сила тока I, текущего через катушку индуктивности и напряжение U на конденсаторе. Значит, в контуре появляются электрические колебания, причем колебания сопровождаются превращениями энергий электрического и магнитного полей.

С электрическими колебаниями в колебательном контуре можно провести аналогию с механическими колебаниями маятника (рис. 1 внизу), которые сопровождаются взаимными превращениями кинетической и потенциальной энергий маятника (на рисунке Е - кинетическая энергия, П - потенцияльная). В данном случае энергия электрического поля конденсатора Q2/(2C) аналогична потенциальной энергии маятника, энергия магнитного поля катушки (LQ2/2) — кинетической энергии, сила тока в контуре — скорости движения маятника. Индуктивность L аналогична массе m, а сопротивление контура — силе трения, которая действуюет на маятник.

По закону Ома, для контура, который содержит резистор сопротивлением R, катушку индуктивностью L, и конденсатор емкостью С

где IR—напряжение на резисторе, UC = Q/C - напряжение на конденсаторе, ξs = -L(dI/dt) – э.д.с. самоиндукции, которая возникает в катушке при протекании в ней переменного тока (ξs – единственная э.д.с. в контуре). Значит,

(1)

Разделив формулу (1) на L и подставив и получим дифференциальное уравнение колебаний заряда Q в контуре:

(2)

В рассматриваемом колебательном контуре внешние э.д.с. отсутствуют, значит колебания в контуре представляют собой свободные колебания. Если сопротивление R=0, то свободные электромагнитные колебания в контуре будут гармоническими. Тогда из (2) найдем дифференциальное уравнение свободных гармонических колебаний заряда в контуре:

Из формулы (1) следует, что заряд Q гармонически колеблеься по закону

(3)

где Qm — амплитуда колебаний заряда конденсатора с циклической частотой ω0, которая называется собственной частотой контура, т. е.

(4)

и периодом

(5)

Выражение (5) впервые было получено У. Томсоном и называется формулой Томсона. Сила тока в колебательном контуре

(6)

где Im = ω0Qm — амплитуда силы тока. Напряжение на конденсаторе равно

(7)

где Um=Qm/C - амплитуда напряжения.

Из формул (3) и (6) вытекает, что колебания тока I опережают по фазе колебания заряда Q на π/2, т.е., когда ток равен максимальному значению, заряд (а также и напряжение (7)) обращается в нуль, и наоборот.

 

29.НЕ СМОГ НАЙТИ, КТО ЭТО ЧИТАЕТ НАЙДИТЕ ПЛЗ!;)







ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.