|
Интерференция двух плоских волнПусть имеются две плоские волны: По принципу суперпозиции результирующее поле в области пересечения этих волн будет определяться суммой: Интенсивность задается соотношением: Откуда с учетом: Для простоты рассмотрим одномерный случай Интерференционная картина представляет собой чередование светлых и темных полос, шаг которых равен: Примером этого случая является интерференционная картина в отраженном от поверхностей плоскопараллельной пластинки свете. Случай неравных частот В некоторых учебниках и пособиях говорится о том, что интерференция света возможна только для волн образованных от одного источника света путём амплитудного либо полевого деления волновых фронтов. Это утверждение является неверным. С точки зрения принципа суперпозиции интерференция существует всегда, даже когда интерферируют волны от двух разных источников света. Правильно было бы говорить о наблюдении или возможности наблюдения интерференционной картины. Последняя может быть нестационарна во времени, что приводит к замазыванию и исчезновению интерференционных полос. Рассмотрим две плоские волны с разными частотами:
По принципу суперпозиции результирующее поле в области пересечения этих волн будет определяться суммой: Пусть некоторый прибор, обладающий некоторым характерным временем регистрации (экспозиции), фотографирует интерференционную картину. В физической оптике интенсивностью называют усредненный по времени поток световой энергии через единичную площадку ортогональную направлению распространения волны. Время усреднения определяется временем интегрирования фотоприемника, а для устройств, работающих в режиме накопления сигнала (фотокамеры, фотопленка и т. п.), временем экспозиции. Поэтому приемники излучения оптического диапазона реагируют на среднее значение потока энергии. То есть сигнал с фотоприемника пропорционален: где под <> подразумевается усреднение. Во многих научно технических приложениях данное понятие обобщается на любые, в том числе и не плоские волны. Так как в большинстве случаев, например в задачах связанных с интерференцией и дифракцией света, исследуется в основном пространственное положение максимумов и минимумов и их относительная интенсивность, постоянные множители, не зависящие от пространственных координат, часто не учитываются. По этой причине часто полагают: Квадрат модуля амплитуды задается соотношением: Откуда, подставляя напряженность электрического поля, получим:
С учётом определения интенсивности можно перейти к следующиму выражению: [1] Взятие интеграла по времени и применение формулы разности синусов даёт следующие выражения для распределения интенсивности: В итоговом соотношении слагаемое, содержащее тригонометрические множители, называется интерференционным членом. Оно отвечает за модуляцию интенсивности интерференционными полосами. Степень различимости полос на фоне средней интенсивности называется видностью или контрастом интерференционных полос: [править] Условия наблюдения интерференции Рассмотрим несколько характерных случаев: 1. Ортогональность поляризаций волн. При этом 2. В случае равенства частот волн 3. В случае 4. В случае Общий случай интерференции При взятии интеграла в соотношении [1] полагалось, что разность фаз Оно называется общим законом интерференции стационарных оптических полей. 36. Расчет интерференционной картины от двух источников
Рассмотрим более подробно основные свойства интерференционной картины, создаваемой двумя источниками электромагнитных волн одинаковой интенсивности и наблюдаемой на плоском экране, расположенным на расстоянии
Область, в которой волны источников перекрываются, называется полем интерференции. В поле интерференции имеются места, где волны источников будут складываться в фазе. В этих местах будут отмечаться максимумы интенсивности электромагнитного поля. Там же, где волны будут складываться в противофазе - минимальная интенсивность. Если в поле интерференции поместить непрозрачный экран, то будет наблюдается чередование светлых и тёмных полос (рис. 4.3a), представляющие собой интерференционную картину. Параметрами интерференционной картины являются положение её максимумов
В соответствии с (4.4a) для расчёта этих величин надо найти разность фаз
где
Из рис. 4.3a имеем очевидные соотношения, определяющие расстояния
Отсюда следует, что
Принимая во внимание, что
Использование этого соотношения приводит к следующему выражению для оптической разности хода волн
Максимум интерференционной картины будет наблюдаться при условии синфазного сложения колебаний волн источников, которое имеет место при
где
Найдём координату
где
Порядком интерференционного максимума называют его номер '
Аналогичным образом можно найти положения минимумов интерференционной картины двух источников, определяемые координатами
где
Отсюда следует, что в рассматриваемой интерференционной картине положения соседних интерференционных максимумов и минимумов находятся на одинаковом расстоянии друг от друга и не зависят от того, насколько эти максимумы удалены от центра интерференционной картины. Это свойство максимумов и минимумов позволяет определить ширину интерференционной полосы.
Ширина интерференционной полосы определяется, как расстояние между соседними интерференционными максимумами или минимумами, интерференционные порядки которых отличаются на единицу. Для рассматриваемой интерференционной картины двух источников волн одинаковой интенсивности в соответствии с выражениями (4.9) ширина полосы
Из этой формулы следует, что расстояние между интерференционными полосами растёт при уменьшении
В этом случае для световых волн, длина волны которых
Рассмотрим распределение интенсивности света в плоскости интерференционной картины, если интенсивность источников одинаковы, т.е.
где
В плоскости экрана интенсивность интерференционной картины (рис. 4.3b) двух точечных монохроматических источников электромагнитных волн одинаковой интенсивности
Изменение интенсивности в соответствии с этим выражением в оптике известно, как изменение интенсивности по закону "квадрат косинуса". В максимумах интенсивность интерференционной картины в четыре раза превышает интенсивность интерферирующих источников волны. В минимумах интенсивность равна нулю. Среднее значение распределения интенсивности
Для немонохроматических источников электромагнитных волн в центре картины максимумы всех составляющих колебаний разных частот интерферирующих источников совпадают. Однако, по мере удаления от центра ввиду того, что направления на максимумы и минимумы зависят от длины волны, может происходить ' наложение' интерференционных максимумов одной волны на минимумы другой. В результате
интерференционная картина немонохроматических источников будет смазываться ближе к краю их интерференционного поля. Следовательно, число наблюдаемых интерференционных полос будет меньше по сравнению со случаем монохроматических источников. Возможность наблюдения интерференционной картины электромагнитных волн обусловлена свойством когерентности их источников, подробнее рассматриваемой в следующем параграфе. 37. Интерференция в тонких пленках В опыте Поля свет от источника S отражается двумя поверхностями тонкой прозрачной плоскопараллельной пластинки
Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения P находится в бесконечности либо на экране, расположенном в фокальной плоскости собирающей линзы
В этом случае оба луча, идущие от S к P, порождены 38. Принцип Гюйгенса-Френеля Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых. Принцип Гюйгенса — Френеля формулируется следующим образом: Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн. Густав Кирхгоф придал принципу Гюйгенса — Френеля строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа (см. метод Кирхгофа). Фронтом волны точечного источника в однородном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова. Дальнейшим обобщением и развитием принципа Гюйгенса — Френеля является формулировка через интегралы по траекториям, служащая основой современной квантовой механики. Особенность дифракционных эффектов состоит в том, что дифракционная картина в каждой точке пространства является результатом интерференции лучей от большого числа вторичных источников Гюйгенса. Объяснение этих эффектов было осуществлено Френелем и получило название принципа Гюйгенса - Френеля. Сущность принципа Гюйгенса - Френеля можно представить в виде нескольких положений: всю волновую поверхность, возбуждаемую каким-либо источником S0 площадью S, можно разбить на малые участки с равными площадями dS, которые будут являться системой вторичных источников, испускающих вторичные волны; эти вторичные источники, эквивалентные одному и тому же первичному источнику S0, когерентны между собой. Поэтому волны, распространяющиеся от источника S0, в любой точке пространства должны являться результатом интерференции всех вторичных волн; мощности излучения всех вторичных источников - участков волновой поверхности с одинаковыми площадями – одинаковы; каждый вторичный источник (с площадью dS) излучает преимущественно в направлении внешней нормали п к волновой поверхности в этой точке; амплитуда вторичных волн в направлении, составляющем с п угол, тем меньше, чем больше угол а, и равна нулю; амплитуда вторичных волн, дошедших до данной точки пространства, зависит от расстояния вторичного источника до этой точки: чем больше расстояние, тем меньше амплитуда; когда часть волновой поверхности S прикрыта непрозрачным экраном, вторичные волны излучаются только открытыми участками этой поверхности. При этом часть световой волны, закрытая непрозрачным экраном, не действует совсем, а открытые области волны действуют так, как если бы экрана совсем не было. Метод зон Френеля Зоны Френеля, участки, на которые можно разбить поверхность световой (или звуковой) волны для вычисления результатов дифракции света (или звука). Впервые этот метод применил О. Френель в 1815—19. Суть метода такова. Пусть от светящейся точки Q (рис.) распространяется сферическая волна и требуется определить характеристики волнового процесса, вызванного ею в точке Р. Разделим поверхность волны S на кольцевые зоны; для этого проведём из точки Р сферы радиусами PO, Pa = PO + l/2; Pb = Pa + l/2, Pc = Pb + l/2, (О — точка пересечения поверхности волны с линией PQ; l — длина световой волны). Кольцеобразные участки поверхности волны, "вырезаемые" из неё этими сферами, и называется З. Ф. Волновой процесс в точке Р можно рассматривать как результат сложения колебаний, вызываемых в этой точке каждой З. Ф. в отдельности. Амплитуда таких колебаний медленно убывает с возрастанием номера зоны (отсчитываемого от точки О), а фазы колебаний, вызываемых в Р смежными зонами, противоположны. Поэтому волны, приходящие в Р от двух смежных зон, гасят друг друга, а действие зон, следующих через одну, складывается. Если волна распространяется, не встречая препятствий, то, как показывает расчёт, её действие (сумма воздействий всех З. Ф.) эквивалентно действию половины первой зоны. Если же при помощи экрана с прозрачными концентрическими участками выделить части волны, соответствующие, например, N нечётным зонам Френеля, то действие всех выделенных зон сложится и амплитуда колебаний Uнечёт в точке Р возрастёт в 2N раз, а интенсивность света в 4N2 раз, причём освещённость в точках, окружающих Р, уменьшится. То же получится при выделении только чётных зон, но фаза суммарной волны Uчётбудет иметь противоположный знак. Такие зонные экраны (т. н. линзы Френеля) находят применение не только в оптике, но и в акустике и радиотехнике — в области достаточно малых длин волн, когда размеры линз получаются не слишком большими (сантиметровые радиоволны, ультразвуковые волны). Метод З. Ф. позволяет быстро и наглядно составлять качественное, а иногда и довольно точное количественное представление о результате дифракции волн при различных сложных условиях их распространения. Он применяется поэтому не только в оптике, но и при изучении распространения радио- и звуковых волн для определения эффективной трассы "луча", идущего от передатчика к приёмнику; для выяснения того, будут ли при данных условиях играть роль дифракционные явления; для ориентировки в вопросах о направленности излучения, фокусировке волн и т.п. Дифракция Френеля Дифра́кция Френе́ля — дифракционная картина, которая наблюдается на небольшом расстоянии от препятствия, по условиям, когда основной вклад в интерференционную картину дают границы экрана. На рисунке схематично изображён (слева) непрозрачный экран с круглым отверстием (апертура), слева от которого расположен источник света. Изображение фиксируется на другом экране - справа. Вследствие дифракции свет, проходящий через отверстие, расходится, поэтому область, которая была затемнена по законам геометрической оптики, будет частично освещённой. В области, которая при прямолинейном распространении света была бы освещённой, наблюдаются колебания интенсивности освещения в виде концентрических колец. Дифракционная картина для дифракции Френеля зависит от расстояния между экранами и от расположения источников света. Её можно рассчитать, считая, что каждая точка на границе апертуры излучает сферическую волну по принципу Гюйгенса. В точке наблюдения (занимаемое вторым экраном) волны или усиливают друг друга, или гасятся в зависимости от разности хода. НЕ ПОЛНОСТЬЮ Дифракция Фраунговера Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды. Расстояние должно быть таким, чтобы можно было пренебречь в выражении для разности фаз членами порядка Дифракционные явления Фраунгофера имеют большое практическое значение, лежат в основе принципа действия многих спектральных приборов, в частности, дифракционных решёток. В последнем случае для наблюдения светового поля «в бесконечности» используются линзы или вогнутые дифракционные решетки (соответственно, экран ставится в фокальной плоскости). Дисперсия света Диспе́рсия све́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее. - Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации. Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней: - у красного цвета максимальная скорость в среде и минимальная степень преломления, - у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления. Однако в некоторых веществах (например в парах йода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров йода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет. Дисперсия света позволила впервые вполне убедительно показать составную природу белого света. - Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному. По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу. Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая). Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видео-объективов. Коши пришел к формуле, выражающей зависимость показателя преломления от длины волны:
где: L — длина волны в вакууме; a, b, c, … — постоянные, значения которых для каждого вещества должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. ![]() ![]() Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... ![]() ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... ![]() Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... ![]() Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|