Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







V1: ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ





I:

S: Электромагнитные колебания

-: Возникают под действием постоянного источника энергии

+: Возникают в контуре без участия внешних факторов за счет первоначально накопленной энергии

-: Совершаются в замкнутых системах за счет флуктуаций энергии

-: Возникают вокруг любых проводников с током

-: Возникают при освещении металла

 

I:

S: Электромагнитные колебания в вакууме распространяются со скоростью

-: 340 м/с

-: 1000 м/с

-: 3000 км/с

+:300000 км/с

-: 3·106 км/с

 

I:

S: Согласно теории Максвелла скорость распространения переменного магнитного поля может быть рассчитана с помощью выражения

-:

-:

-:

-:

+:

I:

S: Электромагнитной природой обладает

-: Звук

-: Ультразвук

+: Свет

-: Процесс диффузии

-: Явление термоэлектричества.

 

I:

S: Между длиной волны λ, периодом Т и скоростью v распространения электромагнитной волны установлено соотношение

-:

+:

-:

-:

-:

I:

S: В состав закрытого колебательного контура входят

-: Источник тока и катушка индуктивности

-: Конденсатор и источник тока

+: Конденсатор и катушка индуктивности

-: Конденсатор, источник тока и реостат

-: Источник тока, конденсатор и катушка индуктивности

 

I:

S: Частота колебаний в контуре может быть рассчитана с использованием формулы

-: Максвелла

+:Томсона

-: Эйнштейна

-: Кулона

-: Ампера.

 

I:

S: Период электромагнитных колебаний в контуре определяется выражением

-:

-:

-:

+:

-:

I:

S: Интенсивность электромагнитной волны

-: Пропорциональна ее частоте;

-: Пропорциональна ее периоду;

-: Обратно пропорциональна частоте;

+: Пропорциональна квадрату ее частоты;

-:5. Не зависит от ее частоты.

I:

S: Колебательный контур применяется в

-: Трансформаторах напряжения

-: Конструкции полупроводникового диода

+:Конструкции генераторов переменного тока

-: Лампах накаливания

-: Реостатах.

 

I:

S: Прохождение переменного электрического тока не сопровождается потерей энергии в

-: Проводнике;

-: Электролите;

-: Лампе накаливания;

+: Конденсаторе;

-: Трансформаторе.

I:

S: Интенсивность электромагнитной волны

-: Пропорциональна ее частоте;

-: Пропорциональна ее периоду;

-: Обратно пропорциональна частоте;

+:Пропорциональна квадрату ее частоты;

-: Не зависит от ее частоты.

 

V1: ПЕРЕМЕННЫЙ ТОК

I:

S: Сила переменного тока изменяется по закону

+:

-: ;

-:

-:

-:

 

I:

S: Для расчета полного сопротивления цепи переменного тока следует воспользоваться формулой

 

-: Z=R + RL + RC

-:

+:

-:

-:

 

I:

S: Для расчета индуктивного сопротивления справедливо выражение

-:

-:

-:

+:

-:

 

I:

S: Для расчета емкостного сопротивления следует воспользоваться выражением

-:

+:

-:

-:

-:

 

I:

S: Эффективное Iэ и амплитудное Iо значения переменного тока связаны выражением

-:

-:

+:

-:

-: .

 

I:

S: В тканях человека наблюдается наличие

-: Только активного сопротивления

-: Только емкостного сопротивления

-: Только индуктивного сопротивления

-: И активного и индуктивного сопротивления

+: И активного и емкостного сопротивления

 

I:

S: Воздействие на человека электрического тока поражающего действия может вызвать

-: Разрушение биомакромолекул

+: Фибрилляцию желудочков сердца

-: Диссоциацию молекул воды на ионы

-: Лишение клеток способности к делению

-: Нарушение гомеостаза

 

I:

S: К реактивному типу сопротивлений можно отнести

+:Индуктивное сопротивление

-: Омическое сопротивление

-: Внутреннее сопротивление источника тока

-: Внешнее сопротивление цепи

-: Емкостное сопротивление

 

I:

S: Прохождение переменного электрического тока не сопровождается потерей энергии в

-: Проводнике

-: Электролите

-: Лампе накаливания

+. Конденсаторе

-: Трансформаторе

 

V1: ДИФРАКЦИЯ СВЕТА

I:

S: Дифракцией света называется явление

-: При котором электрическая составляющая светового вектора колеблется в одной плоскости

+: Отклонения света от прямолинейного распространения в среде с резкими неоднородностями

-: Наложения световых пучков от когерентных источников, при котором получается устойчивая картина их взаимного усиления или ослабления

-: Освобождения электронов от связей с атомами и молекулами вещества под воздействием видимого света

-: Поглощения света в мутных средах

 

I:

S: В явлении дифракции обнаруживаются

-: Магнитные свойства света

-: Электрические свойства света

-: Прямолинейность распространения света

-: Корпускулярные свойства света

+: Волновые свойства света

 

I:

S: Дифракционный максимум от щели имеет место при условии, когда

+: Пучки лучей дифрагируют под углами, соответствующими нечетному числу зон Френеля

-: Пучки лучей дифрагируют под углами, соответствующими четному числу зон Френеля

-: Разность хода лучей равна нечетному числу полуволн

-: Разность хода лучей равна четному числу полуволн

-: Разность хода лучей равна целому числу волн

 

I:

S: Дифракционный минимум от щели имеет место при условии, когда

-: Пучки лучей дифрагируют под углами, соответствующими нечетному числу зон Френеля

+: Пучки лучей дифрагируют под углами, соответствующими четному числу зон Френеля

-: Разность хода лучей равна нечетному числу полуволн

-: Разность хода лучей равна четному числу полуволн

-: Разность хода лучей равна целому числу волн

 

I:

S: Дифракционный максимум наблюдается при разности хода световых лучей

-:

+:

-:

-:

-:

 

I:

S: Дифракционный минимум наблюдается при разности хода световых лучей

-:

-:

+:

-:

-:

 

I:

S: При дифракции света от одной щели дифракционные максимумы наблюдаются под углами, для которых

+:

-:

-:

-:

-:

 

I:

S: При дифракции света от одной щели дифракционные минимумы наблюдаются под углами, для которых

-:

-:

-:

+:

-:

 

I:

S: Дифракционная решетка представляет собой

-: Тонкую фольгу с большим числом квадратных ячеек

-: Мелкоячеистую проволочную сетку

+: Совокупность большого числа узких параллельных щелей, расположенных близко друг от друга

-: Плоский экран с рядом круглых отверстий

-: Плоский экран с рядом квадратных отверстий

 

I:

S: Для дифракционной решетки справедливо соотношение

-:

-:

+:

-:

-:

 

I:

S: Дифракционная решетка используется для:

-: Определения концентрации растворов оптически активных веществ

+: Точного измерения длины световых волн

-: Измерения толщины прозрачных микрообъектов

-: Усиления яркости изображений

-: Получения увеличенного изображения мелких объектов

 

I:

S: Явление дифракции используется

-: В концентрационной колориметрии

-: В ультрамикроскопии

-: В голографии

+: В рентгеноструктурном анализе

-: В рефрактометрии

 

I:

S: Гипотеза о том, что движущиеся микрочастицы обладают волновыми свойствами впервые была высказана

+: Де-Бройлем

-: Эйнштейном

-: Бором

-: Планком

-: Шредингером

 

I:

S: Движение микрочастицы сопровождается распространением волны, длина которой равна

-:

-:

-:

-:

+:

 

I:

S: Первое экспериментальное подтверждение гипотезы о том, что движущиеся микрочастицы обладают волновыми свойствами, было дано

-: Кулоном

-: Планком

-: Эйнштейном

+: Дэвиссоном и Джермером

-: Томсоном и Тартаковским

 

I:

S: Волновые свойства частиц были обнаружены в опытах по

-: Отражению микрочастиц от границы раздела сред

-: Поглощению микрочастиц в мутных средах

+: Дифракции электронов

-: Поляризации протонов

-: Интерференции альфа-частиц

 

V1: ИНТЕРФЕРЕНЦИЯ СВЕТА

 

I:

S: Интерференцией света называется явление

-: При котором электрическая составляющая светового вектора колеблется в одной плоскости

-: Отклонения света от прямолинейного распространения в среде с резкими неоднородностями

+: Наложения световых пучков от когерентных источников, при котором получается устойчивая картина их взаимного усиления или ослабления

-: Освобождения электронов от связей с атомами и молекулами вещества под воздействием видимого света

-: Поглощения света в мутных средах

 

I:

S: В явлении интерференции обнаруживаются

-: Магнитные свойства света

-: Электрические свойства света

-: Прямолинейность распространения света

-: Корпускулярные свойства света

+: Волновые свойства света

 

I:

S: Интерференционный максимум имеет место при условии, когда разность хода световых лучей равна

-: Целому числу полуволн

-: Нечетному числу полуволн

+: Четному числу полуволн

-: Четному числу волн

-: Нулю

 

I:

S: Интерференционный минимум имеет место при условии, когда разность хода световых лучей равна

-: Целому числу полуволн

+: Нечетному числу полуволн

-: Четному числу полуволн

-: Четному числу волн

-: Нулю

 

I:

S: Координаты максимумов интерференции рассчитываются по формуле

+:

-:

-:

-:

-:

 

I:

S: Координаты минимумов интерференции рассчитываются по формуле

-:

+:

-:

-:

-:

 

I:

S: Расстояние между двумя ближайшими максимумами интерференции рассчитывается по формуле

-:

-:

+:

-:

-:

 

I:

S: Когерентными называются источники, которые излучают

-: Монохроматический свет

-: Поляризованный свет

-: Ультрафиолетовый свет

+: С постоянной разностью фаз

-: С постоянной частотой

 

I:

S: Верно, что

-: Когерентными являются любые два источника света, излучающие при одинаковой температуре

+: Естественные когерентные источники света в природе не встречаются

-: Естественные когерентные источники света в природе встречаются крайне редко

+: Когерентные источники света можно получить с помощью зеркал Френеля

-: Когерентные источники света можно получить с помощью рассеивающей линзы

 

 

I:

S: Явление интерференции используется в

-: Сахариметрах

-: Поляриметрах

-: Спектроскопах

-: Рефрактометрах

+: Интерферометрах

 

I:

S: Интерферометры используются для

-: Определения концентрации растворов оптически активных веществ

-: Точного измерения длины световых волн

+: Измерения толщины прозрачных микрообъектов с высокой точностью

-: Усиления яркости изображений при визуализации внутренних органов

-: Получения увеличенного изображения микрообъектов

 

V1: ПОЛЯРИЗАЦИЯ СВЕТА

I:

S: Поляризацией света называется явление

+: При котором электрическая составляющая светового вектора колеблется в одной плоскости

-: Отклонения света от прямолинейного распространения в среде с резкими неоднородностями

-: Наложения световых пучков от когерентных источников, при котором получается устойчивая картина их взаимного усиления или ослабления

-: Освобождения электронов от связей с атомами и молекулами вещества под воздействием видимого света

-: Поглощения света в мутных средах

 

I:

S: В явлении поляризации обнаруживаются

-: Магнитные свойства света

-: Электрические свойства света

-: Прямолинейность распространения света

-: Корпускулярные свойства света

+: Волновые свойства света

I:

S: Поляризация света описывается законом

+: Малюса

-: Бугера

-: Ламберта

-: Бера

-: Гюйгенса

I:

S: Интенсивность поляризованного света описывается формулой

-:

-:

-:

+:

-:

 

I:

S: К поляризаторам можно отнести

-: Стекло

+: Турмалин

-: Хрусталь

-: Полиэтилен

-: Алмаз

 

I:

S: Наиболее распространенным поляризационным устройством является

-: Зеркало Френеля

-: Экран Гюйгенса

-: Плоско-параллельная пластинка

+: Призма Николя

-: Дифракционная решетка

I:

S: Свойством вращения плоскости поляризации обладает

-: Спирт

+: Никотин

+: Водный раствор сахара

-: Кварц

-: Хрусталь

I:

S: Угол поворота плоскости поляризации в растворе пропорционален его

+: Концентрации

-: Удельному весу

+: Толщине слоя

-: Показателю преломления

-: Коэффициенту поглощения

I:

S: Угол поворота плоскости поляризации определяется выражением

-:

+:

-:

-:

-:

 

I:

S: Явление вращения плоскости поляризации используется в

+: Сахариметрах

-: Спектроскопах

-: Рефрактометрах

-: Интерферометрах

-: Гониометрах

 

 

I:

S: Поляриметры используются для

-: Определения показателя преломления вещества

-: Измерения толщины прозрачных микрообъектов

+: Определения концентрации растворов оптически активных веществ

-: Точного измерения длины световых волн

-: Усиления яркости изображений

 

 

V1: ПРИРОДА СВЕТА

I:

S: Корпускулярная теория была разработана

-: Лебедевым

+: Ньютоном

-: Гельмгольцем

-: Гюйгенсом

 

I:

S: Волновая теория была разработана

-: Лебедевым

-: Ньютоном

-: Гельмгольцем

+: Гюйгенсом

 

I:

S: И корпускулярная и волновая теории сформировались к концу

-: 15-го столетия

-: 16-го столетия

+: 17-го столетия

-: 18-го столетия

 

I:

S: Дальнейшее усовершенствование волной теории было осуществлено

+: Юнгом

-: Дираком

+: Френелем

-: Майкельсоном

 

I:

S: Дальнейшее усовершенствование корпускулярной теории было осуществлено

-: Юнгом

+: Планком

-: Френелем

+: Эйнштейном

 

I:

S: Представлениям о волновой природе света противоречат такие оптические явления как

+: Фотоэффект

-: Дифракция света

-: Интерференция света

-: Рефракция света

 

I:

S: Представлениям о квантовой природе света противоречат такие оптические явления как

-: Фотоэффект

+: Дифракция света

-: Люминесценция света

-: Атомные и молекулярные спектры

 

I:

S: Впервые световое давление было обнаружено в опытах

-: Ньютона

-: Гюйгенса

+: Лебедева

-: Прохорова

 

I:

S: Квантовая теория света основана на

+: Дискретном характере излучения и поглощения света

-: Непрерывном характере излучения и поглощения света

-: Волновом характере излучения и поглощения света

-: Дискретном характере отражения и преломления света

 

I:

S: Двойственность природы света получила название

-: Корпускулярного формализма

-: Волнового дуализма

-: Корпускулярно-волнового формализма

+: Корпускулярно-волнового дуализма

 

 

V1: СТРОЕНИЕ АТОМА

 

I:

S: Атом в рамках резерфордовских представлений представляет собой

образование, в котором

-: Положительный и отрицательный заряды равномерно рассредоточены по объему атома

-: Электроны и протоны равномерно распределены в виде связанных зарядов

+: Положительный заряд сосредоточен в центре, а электроны вращаются вокруг него по орбитам

-: Нейтроны и электроны находятся в центре атома, а протоны вращаются вокруг него по орбитам

-: В силу электрической нейтральности атома в ядре располагаются только нейтроны, а электроны вращаются вокруг атома

 

I:

S: В рамках модели атома по Резерфорду

-: Была установлена радиоактивность атома

-: Удалось определить заряд и массу электрона

-: Были объяснены спектры излучения атома водорода

-: Была рассчитана полная энергия атома

+: Были объяснены опыт по рассеянию альфа-частиц и установлены размеры ядра

 

I:

S: Недостатки резерфордовской модели атома состоят в том, что:

-: Резерфордовская модель атома не учитывала того факта, что электроны находятся в движении

+: В резерфордовской модели атом является неустойчивым образованием, тогда как опыт свидетельствует об обратном

-: По Резерфорду атом является устойчивым образованием, тогда как опыт свидетельствует об обратном

-: Спектр излучения атома по Резерфорду является дискретным, тогда как опыт говорит о непрерывном характере излучения

+: Спектр излучения атома по Резерфорду является непрерывным, тогда как опыт говорит о дискретном характере излучения

 

I:

S: Модель атома Резерфорда была усовершенствована на основе

представлений о

-: Радиоактивном характере излучения атома

-: Малости размеров и массы электрона по сравнению с размерами и массой ядра

атома

-: Устойчивости атома

+: Дискретности энергетических состояний атома

-: Зависимости частоты излучения абсолютно черного тела от температуры

 

I:

S: Согласно первому постулату Бора

-: Ядро атома заряжено положительно, а электроны движутся по электронным

орбитам

-: Атом электрически нейтрален вследствие того, что заряд ядра численно равен суммарному заряду электронов на орбитах атома.

-: Электроны могут двигаться в атоме только по внешним орбитам

+: Электроны могут двигаться в атоме не по любым орбитам, а по орбитам вполне определенного радиуса

-: Движение электронов по стационарным орбитам не сопровождается излучением (поглощением) энергии

 

I:

S: Математическим выражением первого постулата Бора является:

-:

-:

+:

-:

-:

 

I:

S: Согласно второму постулату Бора

-: Переход электрона с одной стационарной орбиты на другую сопровождается излучением (поглощением) кванта энергии

-: Атом электрически нейтрален вследствие того, что заряд ядра численно равен суммарному заряду электронов на орбитах атома

-: Электроны могут двигаться в атоме только по внешним орбитам

-: Электроны могут двигаться в атоме не по любым орбитам, а по орбитам вполне определенного радиуса

+: Движение электронов по стационарным орбитам не сопровождается излучением (поглощением) энергии

 

I:

S: Согласно третьему постулату Бора

+: Переход электрона с одной стационарной орбиты на другую сопровождается излучением (поглощением) кванта энергии

-: Атом электрически нейтрален вследствие того, что заряд ядра численно равен суммарному заряду электронов на орбитах атома

-: Электроны могут двигаться в атоме только по внешним орбитам

-: Электроны могут двигаться в атоме не по любым орбитам, а по орбитам вполне определенного радиуса

-: Движение электронов по стационарным орбитам не сопровождается излучением (поглощением) энергии

 

I:

S: Математическим выражением третьего постулата Бора является:

-:

+:

-:

-:

-:

I:

S: Центростремительной силой, удерживающей электрон на орбите, является

-: Гравитационная сила притяжения между электроном и ядром

-: Гравитационная сила отталкивания между электроном и ядром

+: Кулоновская сила притяжения между электроном и ядром

-: Кулоновская сила притяжения между электроном и ядром

-: Сила Лоренца, действующая на движущийся электрон

 

I:

S: Условие равновесия электрона на орбите определяется соотношением

-:

-:

-:

+:

-:

 

I:

S: Радиус стационарной орбиты атома водорода определяется соотношением

-:

+:

-:

-:

-:

 

I:

S: Кинетическая энергия поступательного движения электрона в атоме определяется выражением

+:

-:

-:

-:

-:

 

I:

S: Потенциальная энергия электрона в атоме определяется выражением

-:

-:

+:

-:

-:

 

 

I:

S: Полная энергия электрона в атоме определяется выражением

-:

-:

-:

+:

-:

 

I:

S: С учетом выражения для радиуса электронной орбиты полная энергия электрона в атоме может быть записана в виде

-:

+:

-:

-:

-:

 

I:

S: Уровнем энергии атома (или энергетическим уровнем) называется

-: Кинетическая энергия электрона, находящегося на электронной орбите

-: Потенциальная энергия электрона, находящегося на электронной орбите

+: Сумма кинетической и потенциальной энергии электрона, находящегося на электронной орбите

-: Энергия атомного ядра

-: Сумма кинетической и потенциальной энергии электрона, находящегося на электронной орбите, а также энергии ядра атома

 

I:

S: Энергия атома

+: Возрастает с увеличением квантового числа n;

-: Убывает с увеличением квантового числа n

-: Убывает с увеличением радиуса электронной орбиты

-: Возрастает с уменьшением квантового числа и радиуса электронной орбиты

-: Не зависит от квантового числа и радиуса электронной орбиты

 

F1: Физика.

F2: Кумыков В.К.

F3: Стоматология, Лечебное дело

 

V1: ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

 

I:

S: Напряженность электрического поля характеризуется выражением:

-: X = А0sin(ω0t + φ0)

-: X = Vt.

+:

-: F=ma

 

I:

S: Потенциал поля характеризуется выражением:

-: F=ma

-: X = А0sin(ω0t + φ0);

-: X = Vt.

+:

 

I:

S: Электрическое поле характеризуется:

-: температурой

-: давлением

+: напряженностью

-: амплитудой

 

I:

S: Потенциал поля измеряется в:

-: Герцах

-: градусах

+: Вольтах

-: Омах

 

I:

S: Энергетической характеристикой поля является:

+: потенциал

-: температура

-: давление

-: амплитуда

 

I:

S: Закон Кулона выражается соотношением

+:

-:

-:

-:

 

I:

S: Выражением описывается

-: Закон Ома для замкнутой цепи

-: Закон Ома для участка цепи

+: Закон Кулона

-: Второй закон Ньютона

 

I:

S: В выражении символом обозначается

-: Коэффициент пропорциональности

+: Сила взаимодействия между точечными зарядами

-: Расстояние между точечными зарядами

-: Величины зарядов

 

I:

S: В выражении символом обозначается

+: Коэффициент пропорциональности

-: Сила взаимодействия между точечными зарядами

-: Расстояние между точечными зарядами

-: Величины зарядов

 

I:

S: В выражении символом обозначается

-: Коэффициент пропорциональности

-: Сила взаимодействия между точечными зарядами

+: Расстояние между точечными зарядами

-: Величины зарядов

 

I:

S: В выражении символом обозначается

-: Коэффициент пропорциональности

-: Сила взаимодействия между точечными зарядами

-: Расстояние между точечными зарядами

+: Величина первого заряда

 

I:

S: Напряженность электрического поля определяется выражением

+:

-:

-:

-:

 

V1: ПОСТОЯННЫЙ ТОК

 

 

I:

S: Выражением описывается

-: Закон Ома для замкнутой цепи

+: Закон Ома для участка цепи

-: Закон Кулона

-: Второй закон Ньютона

 

I:

S: Выражением описывается

+: Закон Ома для замкнутой цепи

-: Закон Ома для участка цепи

-: Закон Кулона

-: Второй закон Ньютона

 

I:

S: В формуле символ означает

-: Электродвижущую силу

+: Силу тока

-: Внутреннее сопротивление источника тока

-: Сопротивление внешней цепи

 

I:

S: В формуле символ означает

-: Электродвижущую силу

-: Силу тока

-: Внутреннее сопротивление источника тока

+: Сопротивление внешней цепи

 

I:

S: В формуле символ означает

+: Электродвижущую силу

-: Силу тока

-: Внутреннее сопротивление источника тока

-: Сопротивление внешней цепи

 

I:

S: В формуле символ означает

-: Электродвижущую силу

-: Силу тока

+: Внутреннее сопротивление источника тока

-: Сопротивление внешней цепи

 

I:

S: Закон Ома для замкнутой цепи выражается соотношением

-:

-:

-:

+:

I:

S: Закон Ома для участка цепи выражается соотношением

-:

+:

-:

-:

 

I:

S: В выражении символом обозначается

-: Напряжение на участке цепи

-: Сопротивление участка цепи

-: Электродвижущая сила

+: Сила тока на участке цепи

 

I:

S: В выражении символом обозначается

-: Напряжение на участке цепи

+: Сопротивление участка цепи

-: Электродвижущая сила

-: Сила тока на участке цепи

 

I:

S: В выражении символом обозначается

+: Напряжение на участке цепи

-: Сопротивление участка цепи

-: Электродвижущая сила

-: Сила тока на участке цепи

 

V1: ХАРАКТЕРИСТИКИ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

I:

S: Гармоническими называются колебания:

-: при которых колеблющаяся величина изменяется в зависимости от времени по закону котангенса

-: при которых колеблющаяся величина изменяется в зависимости от времени по закону тангенса

+: при которых колеблющаяся величина изменяется в зависимости от времени по закону синуса или косинуса

-: при которых колеблющаяся величина изменяется в зависимости от времени по логарифмическому закону

 

I:

S: Примером гармонических колебаний могут служить

-: движение камня, брошенного вертикально вверх

+: колебания математического маятника

-: свободное падение тела

-: поступательное движение автомобиля

 

I:

S: Гармонические колебания описываются уравнением

-:

-:

+:

-:

 

I:

S: Амплитудой колебаний называют:

-: величину, численно равную времени, в течение которого совершается одно полное колебание

+: величину, численно равную наибольшему отклонению колеблющегося тела от положения равновесия

-: величину, численно равную числу колебаний за единицу времени

-: величину, характеризующую положение колеблющейся точки в данный момент времени

 

I:

S: Частотой колебаний называют:

-: величину, численно равную времени, в течение которого совершается одно полное колебание

-: величину, численно равную наибольшему отклонению колеблющегося тела от положения равновесия

+: величину, численно равную числу колебаний за единицу времени

-: величину, характеризующую положение колеблющейся точки в данный момент времени

 

I:

S: Периодом колебаний называют:

+: величину, численно равную времени, в течение которого совершается одно полное колебание

-: величину, численно равную наибольшему отклонению колеблющегося тела от положения равновесия

-: величину, численно равную числу колебаний за единицу времени

-: величину, характеризующую положение колеблющейся точки в данный момент времени

I:

S: В формуле величи







Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.