Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Хранение данных в памяти ЭВМ.





Различают устройства хранения информации, реализованные в виде электронных схем, и накопители информации, при помощи которых данные записываются на какой-либо носитель, например магнитный или оптический (ранее использовались даже бумажные носители- перфокарты и перфоленты). Устройства, представляющие собой электронные схемы, отличаются небольшим временем доступа к данным, но не позволяют хранить большие объемы информации. Накопители информации наоборот дают возможность хранить большие объемы информации, но время ее записи и считывания больше.

Способы хранения битов в современных ЭВМ. Хранение бита в машине требует устройства, которое может находиться в двух состояниях, например, такого как выключатель (включен или выключен), реле (открыто или закрыто) пли флаг на флагштоке (поднят или опущен). Одно из состояний используется для обозначения 0, второе для обозначения 1.

Триггер – это схема, которая на выходе имеет значение 0 или 1, и это значение остается неизменным до тех пор, пока кратковременный импульс, исходящий от другой цепи, не заставит его переключиться на другое значение. Таким образом триггер может находиться в одном из двух состояний, одно из которых соответствует запоминанию двоичного нуля, другое — запоминанию двоичной единицы.

Современным способом хранения битов также является конденсатор, который состоит из двух небольших металлических пластин, расположенных параллельно друг другу на некотором расстоянии. Если к пластинам подсоединить источник напряжения: к одной пластине — положительный полюс, к другой — отрицательный, заряды из источника перейдут на пластины. Теперь, если убрать источник напряжения, то заряды останутся на пластинах. Если соединить пластины, то возникнет электрический ток, и заряды будут нейтрализованы. Таким образом, конденсатор может находиться в одном из двух состояний (заряжен и разряжен), одно из которых может быть принято за 0, другое — за 1. Современные технологии позволяют создать миллионы крошечных конденсаторов, объединенных в одну цепь на одной пластине (микросхеме, чипе). Поэтому конденсатор стал распространенным способом для хранения битов в машинах.

Триггеры и конденсаторы являются примерами систем хранения с различными степенями устойчивости. Триггер теряет введенные данные после отключения питания. Заряды конденсатора настолько слабы, что они имеют тенденцию рассеиваться сами по себе, даже когда машина включена. Следовательно, заряд конденсатора должен постоянно пополняться при помощи так называемой цепи регенерации. По причине этой неустойчивости память компьютера, построенная таким способом, часто называется динамической памятью. [1, 8]

Память.

Виды памяти показаны на рис. 1.2. Внутренняя память состоит из оперативного и постоянного запоминающего устройства.

 

Рис. 1.2. Виды памяти ЭВМ.

Назначение оперативной памяти – хранение данных, которые могут потребоваться в ближайшее время. В оперативное запоминающее устройство (ОЗУ), которое часто также называют оперативной памятью, с диска или дискет копируются (загружаются) программы, которые выполняются в данный момент. Это значит, что когда вы запускаете какую-либо компьютерную программу, находящуюся на диске, она копируется в оперативную память, после чего процессор начинает выполнять команды, изложенные в этой программе. Часть ОЗУ, называемая «видеопамять», содержит данные, соответствующие текущему изображению на экране. При отключении питания содержимое ОЗУ стирается. Быстродействие (скорость работы) компьютера напрямую зависит от величины его ОЗУ, которое в современных компьютерах обычно составляет Гигабайты. В первых ПК фирмы IBM (1981г.) максимальный объем оперативной памяти был равным 640 Кбайт.

Структура памяти. Запоминающие схемы в оперативной памяти компьютера объединены в управляемые единицы, называемые ячейками памяти, при этом стандартный размер ячейки равен восьми битам или одному байту. Удобно конструировать оперативную память, в которой общее число ячеек является степенью двух. Небольшие компьютеры, применяемые в такой бытовой технике, например, в микроволновой печи, могут содержать оперативную память, насчитывающую только несколько сотен ячеек, в то время как большие компьютеры, используемые для хранения и обработки огромных массивов данных, могут содержать миллиарды ячеек в своей оперативной памяти.

Соотношения между единицами измерений памяти представлено в таблице 1.2.

Таблица 1.2. Единицы измерения памяти ЭВМ.

Единица Содержит байт Содержит Кбайт Содержит Мбайт Содержит Гбайт
1байт        
1Кбайт 1024 (210)      
1Мбайт 1048576 (220)      
1Гбайт 1073741824(230)      
1Тбайт        

Хотя понятия «право» и «лево» не применимы по отношению к внутреннему строению машины, обычно считается, что биты внутри ячейки памяти упорядочены в строке. Последний бит левого конца называется старшим битом, так как если содержимое ячейки представляет собой число, то этот бит будет его старшим разрядом. Также бит, расположенный на правом конце, называют младшим битом.

Для того чтобы идентифицировать ячейки в оперативной памяти, каждой из них приписывается уникальное имя, которое называется адресом. Считается, что ячейки памяти расположены в ряд и пронумерованы по порядку, начиная с нуля. Такая система адресации не только позволяет единственным образом определить ячейку памяти, но также упорядочивает их, позволяя употреблять по отношению к ним такие выражения, как «следующая ячейка» или «предыдущая ячейка».

Важным следствием того, что и ячейки оперативной памяти, и биты в каждой ячейке упорядочены, является тот факт, что все биты в оперативной памяти, по существу, выстроены в длинный ряд. Следовательно, части этого ряда могут использоваться для хранения последовательностей битов, длина которых больше длины одной ячейки памяти. В частности, даже если память разделена на ячейки размером 1 байт, то мы можем хранить цепочку из 16 битов в двух последовательно расположенных ячейках.

Другим следствием представления оперативной памяти в виде упорядоченных ячеек с адресом является возможность индивидуального доступа к каждой ячейке, то есть данные, хранящиеся в оперативной памяти компьютера, могут обрабатываться в случайном порядке. Это объясняет то, что оперативную память часто называют памятью с произвольным доступом (RAM — Random Access Memory). Произвольный доступ к небольшим единицам данных (минимально это один байт) – коренное отличие оперативной памяти от устройств хранения данных, которые рассматриваются далее и в которых длинные последовательности байтов должны обрабатываться как блок. Когда оперативная память построена с использованием технологии динамической памяти (на конденсаторах), ее называют динамической памятью с произвольным доступом (DRAM - Dinamic RAM).

Для заполнения оперативной памяти схема, которая в действительности хранит биты, объединяется со схемой, необходимой для того, чтобы остальные схемы могли хранить и получать данные из ячеек памяти. Таким образом, другие схемы могут получить данные из памяти, запрашивая содержимое ячейки по определенному адресу (операцией чтения), или они могут записывать информацию в память, требуя, чтобы определенная последовательность битов была помещена в ячейку по определенному адресу (операцией записи).

Кэш память – это порция быстродействующей памяти (несколько килобайт), время отклика которой примерно равно времени отклика регистров. Часто она находится в центральном процессоре. В кэш-памяти машина хранит копию той части оперативной памяти, которая сейчас используется. При этом передача данных, которая обычно осуществляется между регистрами и оперативной памятью, происходит между регистрами и кэш-памятью. Все изменения потом передаются в оперативную память, но в более подходящее время.

ПЗУ и внешняя память.

Из-за зависимости от питания (обнуляется при отключении питания) и ограниченного размера оперативной памяти большинство машин снабжены устройствами хранения данных (mass storage sistem), которые включают в себя магнитные диски, компакт-диски и магнитные ленты. Основными отличиями устройств хранения данных от оперативной памяти являются их независимость от питания, большая емкость и, в большинстве случаев, автономность, то есть возможность перемещать запоминающую среду независимо от компьютера, что удобно для создания архивов.

Главным недостатком устройств хранения данных является то, что они требуют механического движения и, следовательно, обладают большим временем отклика по сравнению с оперативной памятью машины, которая является электронной.

Магнитные диски – тонкий вращающийся диск с магнитным покрытием. Запись информации на них основана на способности некоторых материалов, содержащих железо, сохранять намагниченность после кратковременного воздействия магнитного поля. Двоичные нули и единицы записываются на кольцеобразные дорожки диска в виде двух по-разному намагниченных участков. Головки чтения/записи располагаются над и/или под диском, так что, когда диск вращается, головка очерчивает кольцо на поверхности диска, называемое дорожкой. Дорожки разделены на дуги, которые называются секторами (на них информация записана в виде непрерывной последовательности битов размером 512байт). Емкость накопителя на дисках зависит от числа используемых дисков (поверхностей) и плотности расположения дорожек и секторов. Разбиение диска на дорожки и сектора называется форматированием диска.

Диски большой емкости, способные вмещать гигабайты информации, состоят из 5 – 10 жестких дисков, установленных на общем шпинделе. Устройство называется жестким диском (винчестером). Для большей скорости вращения головки чтения/записи в этих устройствах не соприкасаются с диском, а «плавают» над его поверхностью. Жесткий магнитный диск размещается внутри компьютера. Компьютер может иметь пакет (несколько) винчестеров.

Дискета представляет собой гибкий магнитный диск.

Компакт-диски – диски, состоящие из отражающего материала, покрытого прозрачным защитным слоем. Запись информации на них осуществляется посредством изменения структуры их отражающего слоя. Информация извлекается с диска при помощи лазерного луча, который контролирует отличия структуры отражающего слоя диска по мере его вращения. Информация на дисках формата CD-DA (емкость 500-700Мбайт) хранится на дорожке, похожей на спиральный желобок грампластинки. Формат DVD имеет емкость до 10Гбайт.

Магнитные ленты – информация записывается на магнитный слой тонкой пластиковой ленты, которая для хранения наматывается на бобину. Используется для автономного хранения данных (архив).

Флэш-диск – устройство хранения данных, содержащее микросхему электронной энергонезависимой памяти.

Информация на носителях хранится в виде файлов. Файл рассматривается как один многобитовый блок. Файл – область на магнитном диске, наименьшая единица хранения информации, содержащая последовательность байтов и зарегистрированная операционной системой под своим уникальным именем. Уникальное имя файла состоит из имени и расширения (типа файла). Тип файла изменить произвольно нельзя. Параметры, характеризующие файл (свойства): 1) полное имя файла; 2) объем файла в байтах; 3) дата создания файла; 4) время создания файла; 5) атрибуты файла, которые определяют степень доступа к файлу.

Логический диск - это либо весь диск, либо часть диска, предназначенная для хранения определенного объема информации. Логический диск обозначается большой латинской буквой с двоеточием. В компьютере может иметься доступ к нескольким жестким дискам, дисководам для дискет, CD-ромам. Каждый из них может представлять собой отдельный логический диск, но некоторые жесткие диски могут быть разделены на части, каждая из которых является отдельным логическим диском. Компьютер работает с каждым логическим диском как с отдельным устройством, хотя на самом деле он может представлять собой лишь часть реального (физического) диска и даже часть оперативной памяти.

Каталог (директория, англ.directory) (папка) - часть логического диска, предназначенная для хранения определенного объема информации (в виде файлов). Каталог может включать в себя несколько других каталогов (подкаталогов) и входить в состав другого каталога (надкаталога). Логический диск также является каталогом самого высокого уровня - корневым каталогом. Таким образом, на диске образуется система каталогов, имеющая древовидную (иерархическую) структуру.

Структура обработки информации на ЭВМ выглядит следующим образом. При вводе она кодируется единицами и нулями, т.е. битами, затем обрабатывается байтами. Если необходимо сохранить информацию – она «упаковывается» в файлы. При обращении к файлам происходит обратный процесс перехода от кодовой формы к естественной и понятной нам (декодирование информации).

Процессор.

Кроме способности хранить данные, компьютер должен обладать способностью обрабатывать их так, как это предписано алгоритмом. Это значит, что машина должна иметь средства выполнения операций над данными и средства контроля последовательности этих операций. Такие задачи выполняются устройством, которое называется центральным процессором. Процессор — устройство, обеспечивающее преобразование информации и управление другими устройствами компьютера. Современный процессор представляет собой микросхему (англ. chip - чип), выполненную на миниатюрной кремниевой пластине - кристалле. Поэтому его принято называть микропроцессором. В последних моделях микропроцессоров содержится до нескольких миллионов электронных компонентов. Чем больше компонентов содержит микропроцессор, тем выше производительность компьютера. Размер минимального элемента микропроцессора в 100 раз меньше диаметра человеческого волоса. Микропроцессор имеет контакты в виде штырьков, которые вставляются в специальный разъем (сокет) на материнской плате. Разъем имеет форму прямоугольника с несколькими рядами отверстий по периметру.

Центральный процессор состоит из арифметико-логического устройства (АЛУ), которое содержит схему, манипулирующую данными, и устройства управления, которое содержит схему, координирующую деятельность машины (см. рис. 1.1).

Для временного хранения обрабатываемой информации в процессоре содержатся ячейки, или регистры, которые похожи на ячейки оперативной памяти. Они хранят входные данные схемы арифметико-логического устройства и обеспечивают область памяти для хранения результата, порождаемого этим устройством. Устройство управления передает данные из оперативной памяти в регистры общего назначения, информирует арифметико-логическое устройство о том, в каких регистрах хранятся данные, активирует соответствующую схему в арифметико-логическом устройстве и сообщает ему, в каком регистре должен храниться результат.

Важной характеристикой процессора является его производительность (количество элементарных операций, выполняемых им за одну секунду), которая и определяет быстродействие компьютера в целом. В свою очередь, производительность процессора зависит от двух других его характеристик - тактовой частоты и разрядности. В машине находится схема, которая называется тактовым генератором, котораягенерирует импульсы, использующиеся для координирования действий машины. Тактовая частота определяет число тактов работы процессора в секунду. Соответственно чем выше тактовая частота, тем меньше длительность выполнения операций и тем выше производительность компьютера. Под тактом понимается чрезвычайно малый промежуток времени, измеряемый микросекундами, в течение которого может быть выполнена элементарная операция, например сложение двух чисел. Современный персональный компьютер может выполнять миллионы и миллиарды таких элементарных операций в секунду. Для числового выражения тактовой частоты используется единица измерения частоты — мегагерц (МГц)=миллион тактов в секунду, гигагерц (ГГц)= млрд. операций в секунду. Процессор 8086, произведенный фирмой Intel для персональных компьютеров IВМ, мог выполнять не более 10 млн. операций в секунду, т. е. его частота была равна 10 МГц. Тактовая частота современных микропроцессоров составляет гигагерцы.

Разрядность процессора определяет размер минимальной порции информации, над которой процессор выполняет различные операции обработки. Эта порция информации, часто называемая машинным словом, представлена последовательностью двоичных разрядов (бит). Процессор в зависимости от его типа может иметь одновременный доступ к 8, 16, 32, 64 битам. С повышением разрядности увеличивается объем информации, обрабатываемой процессором за один такт, что ведет к уменьшению количества тактов работы, необходимых для выполнения сложных операций. Кроме того, чем выше разрядность, тем с большим объемом памяти может работать процессор. Первые микропроцессоры (1971 г. — фирма Intel) имели разрядность 4 бит, тактовую частоту 108 КГц и способность адресовать 640 байт основной памяти. Современные компьютеры оснащаются 32-разрядными процессорами, и при этом их оперативная память обычно составляет 2 – 16 Гбайт.

Основным устройством обработки информации в ЭВМ является арифметико-логическое устройство, входящее в состав процессора. Его основой является электронная схема, составленная из большого числа транзисторов, называемая сумматором. Сумматором выполняются простейшие логические и арифметические операции над данными, представленными в виде двоичных кодов (нулей и единиц). Арифметические операции: изменение знака, сложение, вычитание, умножение, деление. К логическим операциям относятся логическое умножение (операция "и"), логическое сложение (операция "или") и логическое отрицание (операция "не"). На основе этих трех операций можно производить арифметические действия над числами, представленными в виде нулей и единиц.

Теоретической основой для выполнения логических операций являются законы, разработанные еще в 1847 году ирландским математиком Джорджем Булем (1815-1864), известные как булева алгебра, в которой используются только два числа - 0 и 1. Вначале считалось, что эти работы Буля никому не нужны, и их автор подвергался насмешкам. Однако в 1938 году американский инженер Клод Шеннон положил булеву алгебру в основу теории электрических и электронных переключательных схем - сумматоров, создание которых и привело к появлению ЭВМ, способных автоматически производить арифметические вычисления.

Все остальные операции, сводятся к большому числу простейших арифметических и логических операций, аналогично тому, как операцию умножения можно свести к большому числу операций сложения. [2, 3, 8]

Вследствие такого строения компьютера задача сложения двух значений, хранящихся в оперативной памяти, представляет собой больше, чем простое выполнение операции сложения. Этот процесс включает в себя и работу устройства управления, которое координирует передачу информации между оперативной памятью и регистрами, находящимися в центральном процессоре, и работу арифметико-логического устройства, которое выполняет операцию сложения по команде устройства управления. Процесс сложения двух чисел можно разбить на пять шагов:

1) взять одно из значений из памяти и поместить его в регистр;

2) взять другое значение из памяти и поместить его в другой регистр;

3) активировать схему сложения, на входе которой будут данные из регистров;

4) сохранить результаты в памяти;

5) стоп.

Для того чтобы можно было применять принцип хранимой программы, центральный процессор должен уметь распознавать инструкции, представленные в двоичном коде. Этот набор указаний вместе с системой кодирования называется машинным языком. Инструкции, написанные на этом языке, называются машинными командами. Список команд, которые должен выполнять и декодировать центральный процессор достаточно короткий.

Все машинные команды можно разделить на три группы:

- команды передачи данных (предписывают перемещение данных из одного места в другое. Как пример, шаги 1,2 (команды загрузки) и 4 (команда сохранения) вышерассмотренного алгоритма. В команды передачи данных входят инструкции для связи центрального процессора с внешними устройствами);

- арифметико-логические команды (в примере шаг 3. К этим командам относятся и команды сдвига);

- команды управления (управляют процессом выполнения программы. В примере шаг 5. Это команды перехода - условного и безусловного - и ветвления). [1]

ПК выполняет программу, хранящуюся в памяти, считывая команды из памяти в устройство управления. Как только команда попадает в устройство управления, она расшифровывается и выполняется. Порядок, в котором команды выбираются из памяти, соответствует порядку их хранения в памяти, если другой порядок не определен командой перехода.

Шины и контроллеры.

Для передачи двоичного кода центральный процессор и оперативная память компьютера соединены набором проводников, который называется шиной. С помощью этой шины процессор может извлекать, или считывать данные из оперативной памяти, посылая вместе с сигналом считывания адрес ячейки памяти. Подобным же образом центральный процессор может поместить или записать, данные в память, посылая вместе с сигналом записи адрес ячейки и данные, которые нужно сохранить в этой ячейке. Разработка шины для компьютера долгое время была сложной задачей. Например, электрические провода в шине могут вести себя, как небольшие антенны: ловить сигналы радио, телевидения и т. д., и тем самым нарушать связь между центральным процессором машины, оперативной памятью и периферийными устройствами. Кроме того, длина шины (около шести дюймов для настольных компьютеров) значительно превышает длину «проводов», находящихся внутри центрального процессора, длина которых измеряете в микронах. Следовательно, время, необходимое для того, чтобы сигнал прошел через шину гораздо больше времени, которое требуется для передачи сигнала в пределах центрального процессора. В результате технология создания шин всячески старается не отстать от технологии создания центральных процессоров. В современных компьютерах применяются самые разные шины, которые различаются такими характеристиками, как количество данных, передаваемых одновременно (разрядность), скорость, с которой можно изменить сигнал в шине, физические свойства соединения шины и платы контроллера. Разрядность шины определяется количеством двоичных разрядов, которые передаются одновременно (в настоящее время 64 бита).

Скорость передачи данных измеряется в битах в секунду. Существует два основных способа передачи данных: параллельный и последовательный. Этими терминами обозначают способ передачи битов относительно друг друга. В случае параллельной связи несколько битов передаются одновременно, каждый по отдельному проводнику (линии). Такая техника позволяет быстро передавать данные, но требует достаточно сложной линии связи. В качестве примера можно привести внутреннюю шину компьютера и большинство каналов связи между компьютером и периферийными устройствами, такими как запоминающие устройства и принтеры. В этих случаях скорость передачи данных измеряется в Мбит/с и выше.

При последовательной передаче за один раз передается только один бит. Такая техника передачи данных медленнее, но для нее требуется более простой канал связи, поскольку все биты передаются по одной линии, один за другим. Последовательная связь обычно используется для передачи информации между компьютерами, где более простой канал связи является более экономным.

Взаимодействие между компьютером и другими устройствами обычно происходит через контроллер. Контроллер представляет собой плату, которая вставляется в гнездо материнской платы (слот). Контроллер с помощью кабелей соединен с периферийными устройствами, находящимися внутри компьютера, или с соединительными разъемами (портами), к которым подключаются внешние устройства. Для того чтобы послать цепочку битов контроллеру, прежде всего ее нужно поместить в один из регистров общего назначения процессора, после чего выполнить команду, подобную команде сохранения, чтобы «сохранить» код в контроллере. Точно так же, для того чтобы получить цепочку битов от контроллера, исполняется команда, похожая на команду загрузки. В некоторых компьютерах предусмотрены дополнительные коды операции для этих действий. Команды с такими кодами называются командами ввода-вывода. Команды ввода-вывода находят контроллер с помощью системы адресации, подобной системе адресации оперативной памяти. А именно, каждому контроллеру соответствует уникальный набор адресов (адреса ввода-вывода), которые используются в командах ввода-вывода для указания контроллера-адресата. Набор адресов, соответствующих контроллеру, называется портом, так как они представляют собой «место» через которое информация входит в компьютер и выходит из него. Поскольку адреса ввода-вывода могут иметь такой же вид, как адреса ячеек оперативной памяти, шины компьютеров снабжены сигналом, который показывает, передается сообщение в оперативную память или в контроллер. Следовательно, на команду ввода-вывода: отослать содержимое регистра определенному контроллеру, центральный процессор будет реагировать так же, как на команду отослать цепочку битов в определенную ячейку памяти, только при этом он выставит сигнал, который сообщит устройствам, подключенным к шине, что цепочка битов предназначена для такого-то контроллера, а не для оперативной памяти. [1, 8]

Конструктивное исполнение.

Состав ПК принято называть конфигурацией. Поскольку современные компьютеры имеют блочно-модульную конструкцию, то необходимую аппаратную конфигурацию, можно реализовать из готовых узлов и блоков (модулей), изготовляемых различными производителями. Совместимость устройств является основополагающим принципом открытой архитектуры, которую предложила компания IBM. Это и послужило толчком к массовому производству, как отдельных узлов, так и компьютеров в целом.

Персональные компьютеры выпускаются в следующих конструктивных исполнениях: стационарные (настольные) и переносные (ноутбук). В персональных компьютерах, выпускаемых в портативном варианте, системный блок, монитор и клавиатура объединяются в один корпус. В стационарных ПК эти устройства конструктивно разделены.

Системный блок стационарного компьютера представляет собой металлическую коробку (корпус) со съемной крышкой, в которой размещены различные устройства компьютера. По форме корпуса бывают: 1) Desktop – плоские корпуса (горизонтальное расположение), их обычно располагают на столе и используют в качестве подставки для монитора; 2) Tower - вытянутые в виде башен (вертикальное расположение). Корпуса различаются по размерам, на которые указывают приставки Super, Big, Midi, Micro, Tiny, Flex, Mini, Slim. На передней стенке корпуса размещены кнопки “Power” - Пуск, “Reset” - Перезапуск, индикаторы питания и хода работы ПК. [2]

В системном блоке расположены следующие основные узлы компьютера:

1) системная или материнская плата (motherboard), на которой установлены процессор, память дочерние платы (контроллеры устройств, адаптеры или карты) и другие электронные устройства;

2) блок питания, преобразующий электропитание сети в постоянный ток низкого напряжения, для электронных схем компьютера;

3) накопитель на жестком магнитном диске, предназначенный для чтения и записи на несъемный жесткий магнитный диск (винчестер);

4) накопители на оптических дисках (типа DVD - RW или CD – RW), предназначенные для чтения и записи на компакт – диски;

5) накопители (или дисководы) для гибких магнитных дисков, используемые для чтения и записи на дискеты;

6) устройства охлаждения.

 

Периферийные устройства.

Периферийные устройства — это устройства, с помощью которых информация или вводится в компьютер, или выводится из него. Они также называют внешними или устройствами ввода-вывода данных. Связь компьютера с различными устройствами ввода и вывода осуществляется через порты.

Мышь и внешний модем подключаются с помощью последовательных портов, которые передают электрические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются последовательные порты как СОМ1 и COM2, а аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Принтер обычно подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LPT, а аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока.

Для подключения сканеров и цифровых камер обычно используется порт USB (Universal Serial Bus - универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств.

Клавиатура подключается обычно с помощью последовательного порта PS/2.

На рис. 1.3 указаны только наиболее распространенные устройства. Кроме них имеются специальные устройства, обеспечивающие совместную работу ЭВМ с кассовыми аппаратами, микрофонами, видеокамерами, видеомагнитофонами, медицинскими и научными приборами и т.п. Драйвер устройства – специальная программа, управляющая работой конкретного дополнительного устройства компьютера.







Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.