|
Преобразования. Связь между координатами образа и прообраза. ⇐ ПредыдущаяСтр 3 из 3 Рассмотрим линейное пространство V, в котором каждому элементу x, в силу некоторого закона поставлен элемент этого же пространства. Каждому прообразу соответствует единственный образ. Каждый образ имеет единственный прообраз. Линейное преобразование пространства, при котором существует взаимнооднозначные соответствия. Блективное преобразование – 1. 2. Рассмотрим n-мерное линейное пространство Для того, чтобы задать линейные преобразования в этом пространстве достаточно задать это преобразование для базисных векторов. Матрица линейного преобразования. Пусть F – линейное преобразование линейного пространства, переводящая базис в базис - базис, то верны соотношения А – является матрицей линейного преобразования или линейным оператором пространства. Связь между координатами образа и прообраза. В базисе Линейное преобразование – матрица линейного оператора. Каждому линейному преобразованию соответствует 1 матрица линейного оператора и наоборот. Если имеется квадратная матрица 17. Связь между координатами одного и того же линейного оператора в Разных базисах. Т – матрица перехода от e к e’, то: Если линейный оператор имеет в базисе невырожденную матрицу Т, матрица этого оператора в любом другом базисе не будет вырождена. 18. Характеристическое уравнение линейного оператора. Собственные Векторы линейного оператора и их свойства. Если в базисе ) оператор имеет матрицу В λ – произвольное число ≠0 Е – единичная матрица характеристически многочлен линейного оператора прировнять к 0, получим характеристическое уравнение линейного оператора. Собственные векторы линейного оператора Ненулевой вектор называется собственным вектором линейного оператора, если оператор к этот же умноженный на некоторое к. к – собственное число оператора А= Каждый собственный вектор имеет единственное собственное число. 19. Прямая в пространстве. Виды уравнений прямой. Угол между прямыми. Векторное уравнение прямой. Положение прямой можно задать по точке и направляющему вектору. Пусть прямая L задана ее точкой M0(x0;y0;z 0) и направляющим вектором S(m;n;p). Возьмем на прямой L точку M(x;y;z). Обозначим радиус-векторы точек M и M0 через r и r0. Тогда уравнение прямой запишется в виде: где t – скалярный множитель (параметр). Параметрические уравнения прямой. Канонические уравнения прямой. S(m;n;p) – направляющий вектор прямой L. M0(x0;y0 ;z0) – точка на прямой. соединяет M0 с произвольной точкой М. Уравнение прямой в пространстве, проходящей через две точки. M1(x1;y1;z1) M2(x2;y2;z2) В качестве направляющего вектора можно задать вектор Следовательно: Общее уравнение прямой. Уравнение прямой как линию пересечения двух плоскостей. Рассмотрим: Т.к. прямая перпендикулярна векторам n1 и n2 то направляющий вектор запишется как векторное произведение: Угол между прямыми. 20. Плоскость в пространстве. Виды уравнения плоскостей. Угол между плоскостями. Уравнение плоскости, проходящей через заданную точку, перпендикулярно данному вектору. Пусть плоскость задана точкой M0(x0;y0;z0 ) и вектором перпендикулярной этой плоскости. Возьмем произвольную точку M(x;y;z) и составим вектор . При любом расположении точки М на плоскости Q , поэтому Общее уравнение плоскости. · Если D=0, то данному уравнению удовлетворяет точка О (0;0;0) · Если С=0 то вектор . Следовательно, плоскость параллельна оси oz, если В=0 – то oy, если А=0 – то ox. · Если C=D=0, то плоскость проходит через О (0;0;0), параллельно оси oz. Аналогично при A=D=0 и B=D=0. · Если А=В=0 то уравнение примет вид · Если A=B=D=0, то уравнение имеет вид Уравнение плоскости, проходящей через три точки К (х1;у1) М (х2;у2) N (x3;y3) Возьмем на плоскости точку P (x;y;z). Составим векторы: Эти векторы лежат в одной плоскости, следовательно они компланарны: Уравнение плоскости в отрезках. Пусть плоскость отсекает на осях отрезки, т.е. проходит через точки: Нормальное уравнение плоскости. 21. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Прямая L: Пусть φ – угол между плоскостью и прямой. Тогда θ – угол между Найдем Расстояние от точки до плоскости. Дано: M0 (x0;y0;z0) Расстояние d от точки М0 до плоскости ∆ равно модулю проекции вектора 1(x1;y1;z1) - произвольная точка плоскости) на направление нормального вектора !!!Если плоскость задана уравнением: то расстояние до плоскости находится по формуле: 22. Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между Двумя прямыми. Уравнение с угловым коэффициентом. k= tg α – угловой коэффициент. Если b=0 то прямая проходит через начало координат. Уравнение примет вид Если α=0, то k = tg α = 0. То прямая пройдет параллельно оси ох. Если α=π/2, то уравнение теряет смысл. В этом случае уравнение примет вид параллельно оси оу. Общее уравнение прямой. A, B, C – произвольные числа, причем А и В не равны нулю одновременно. · Если В=0, то уравнение имеет вид или прямой, параллельной оси оу. и проходящей через точку · Если В≠0, то получаем уравнение с угловым коэффициентом · Если С=0, то уравнение проходит через т. О (0;0). Уравнение прямой, проходящей через точку, в данном направлении. т М (х0;у0). Уравнение прямой записывается в виде Подставим в это уравнение точку М Решим систему: Уравнение прямой, проходящей через 2 точки. К (х1;у1) М (х2;у2) Уравнение прямой в отрезках. К (а;0); М (0;b) Подставим точки в уравнение прямой: Уравнение прямой, проходящей через данную точку, перпендикулярно данному вектору. М0 (х0;у0). Возьмем произвольную точку М (х;у). Т.к. Нормальное уравнение прямой. Уравнение прямой можно записать в виде: Т.к. Угол между прямыми. Дано: прямые L1 и L2 с угловыми коэффициентами Требуется найти угол между прямыми: 23. Эллипс. Определение. Вывод канонического уравнения.
геометрическое место всех точек плоскости, сумма расстояний от которых до до фокусов есть величина постоянная, большая, чем расстояние между фокусами. Пусть М (х;у) – произвольная точка эллипса. Т.к. MF1 + MF2 = 2a Т.к. То получаем Или 24. Гипербола. Определение. Вывод канонического уравнения. Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до фокусов есть величина постоянная. Пусть M(x;y) – произвольная точка гиперболы. Тогда согласно определению гиперболы |MF1 – MF2|=2a или MF1 – MF2 =±2a, 25. Парабола. Определение. Вывод канонического уравнения. Парабола – множество всех точек плоскости, каждая из которых одинаково удалена от фокуса, и директрисы. Расстояние между фокусом и директрисой называется параметром параболы и обозначается через р>0.
точка M с F. Проведем отрезок MN перпендикулярно директрисе. Согласно определению MF=MN. 26. Поверхности вращения. Поверхность, образованная вращением некоторой плоской кривой вокруг оси, лежащей в ее плоскости, называется поверхностью вращения. Пусть некоторая кривая L лежит в плоскости Oyz. Уравнение этой кривой запишутся в виде:
Возьмем на поверхности точку M (x;y;z). Проведем через точку М плоскость, перпендикулярную оси oz, и обозначим точки пересечения ее с осью oz и кривой L соответственно O1 и N. Обозначим координаты точки N (0;y1;z1). Отрезки O1M и O1N являются радиусами одной и той же окружности. Поэтому O1M = O1 N. Но O1M = (x2+y2)0.5, O1 N=|y1|. Следовательно, |y1|=(x2+y2)0.5 или y1=±(x2+y2)0.5. Кроме того, очевидно, z1=z. Следовательно искомое уравнение поверхности вращения, ему удовлетворяют координаты любой точка М этой поверхности и не удовлетворяет координаты точек, не лежащих на поверхности вращения. 27. Поверхности 2-го порядка. Эллипсоид, Гиперболоид. Эллипсоид. Рассмотрим сечение поверхности с плоскостями, параллельными xOy. Уравнения таких плоскостей z=h, где h – любое число. Линия, получаемая в сечении, определяется двумя уравнениями: Если |h|>c, c>0, то Если |h|=c, т.е. h=±c, то . Линия пересечения вырождается в две точки (0;0;с) и (0;0;-с). Плоскости z=c и z=–c касаются поверхности. Если |h|<c, то уравнения можно переписать в виде: Линия пересечения есть эллипс с полуосями. Эллипсоид – замкнутая овальная поверхность, где a,b,с – полуоси. Если все они различны, то эллипсоид называется трехосным. Если какие-либо две полуоси равны, то тело называется эллипсоид вращения, если a=b=c, то тело называется сферой x2+y2+z2=R2 Однополостный гиперболоид. Пересекая поверхность плоскостью z=h, получим линию пересечения, уравнения которой имеют вид. Полуоси достигают своего наименьшего значения при h=0, a1=a, b1 =b. При возрастании |h| полуоси будут увеличиваться. Если пересекать поверхность плоскостями x=h или y=h, то в сечении получим гиперболы. Найдем линию пересечения поверхности с плоскостью Oyx, уравнение которой x=0. Эта линия пересечения описывается уравнениями: Поверхность имеет форму бесконечно расширяющейся трубки и называется однополостным гиперболоидом. Двуполостный гиперболоид. Если поверхность пересечь плоскостями z=h, то линия пересечение уравнениями Если |h|<c, то плоскости z=h не пересекаются. Если |h|=c, то плоскости h=±c касаются данной поверхности соответственно в точках (0;0;с) и (0;0;-с). Если |h|>c, то уравнения можно переписать в виде: Эти уравнения определяют эллипс, полуоси которого возрастают с ростом |h|. У обеих гипербол действительной осью является ось oz. Метод сечения позволяет изобразить поверхность, состоящую из двух полостей, имеющих форму двух неограниченных чаш. Поверхность называется двуполостным гиперболоидом. 28. Поверхности 2-го порядка. Параболоиды. Эллиптический. При пересечении поверхности координатами плоскостями Oxz и Oyz получается соответственно параболы и поверхность, определяемая уравнением, имеет вид выпуклой, бесконечно расширяющейся чаши. Гиперболический. Рассечем поверхность плоскостями z=h. Получим кривую которая при всех h≠0 является гиперболой. При h>0 ее действительные оси параллельны оси Ox, при h<0 – параллельные оси Oy. При h=0 линия пересечения распадается на пару пересекающихся прямых: При пересечении поверхности плоскостями, параллельности плоскости Oxz (y=h), будут получаться параболы, ветви которых направлены вверх. 29. Поверхности 2-го порядка. Конусы и цилиндры. Конус. Поверхность, образованная прямыми линиями, проходящими через данную точку Р и пересекающими данную плоскую линию L (не проходящую через Р) называется конической поверхностью или конусом. При этом линия L называется направляющей конуса, точка Р – ее вершиной, а прямая, описывающая поверхность, называется образующей. Цилиндр. Поверхность, образованная движением прямой L, которая перемещается в пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую кривую К, называется цилиндром. При этом кривая К называется направляющей цилиндра, а прямая L – образующая. 30. Исследование кривой второго порядка по ее уравнению без Произведения координат. Уравнение вида Ax2+Cy2+2Dx+2Ey+F=0 всегда определяет либо окружность (при А=С), либо эллипс (при А*С>0), либо гиперболу (при А*С<0), либо параболу (при А*С=0), при этом возможны случаи вырождения: для эллипса (окружности) – в точку или мнимый эллипс (окружность), для гиперболы – в пару пересекающихся прямых, для параболы – в пару параллельных прямых. Общее уравнение второй степени с двумя неизвестными: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0 Коэффициент В с произведением координат преобразовывает уравнение путем поворота координатных осей. 31. Определение предела числовой функции. Односторонние пределы. Свойства пределов. Число А называется пределом функции y=f(x) в точке х0, если для любой последовательности допустимых значений аргумента xn, n?N (xn ≠x0), сходящейся к х0 (т.е. последовательность соответствующих значений функции f(xn), n?N, сходится к числу А, т.е. . Геометрический смысл предела этой функции, что для всех точек х, достаточно близких к точке х0, соответствующие значения функции как угодно мало отличается от числа А. Односторонние пределы. Считается, что х стремится к х0 любым способом: оставаясь меньшим, чем х0 (слева от х0), большим, чем х0 (справа от х0), или колеблясь около точки х0. Число А1 называется пределом функции y=f(x) слева в точке х0, если для любого ε<0 существует число σ=σ(ε)>0 такое, что при х?(x0-σ;x0 ), выполняется неравенство |f(x)-A1|<ε Пределом функции справа называется Свойства пределов. 1) если предел ε – сколь угодно малое число |f(x)-a|=α; f(x)=a+ α 2) сумма конечного числа б.м. чисел есть б.м. число 3) предел произведения равен произведению пределов 4) константы можно выносить за знак предела 5)
1 замечательный предел. Возьмем круг радиуса 1, обозначим радианную меру угла MOB через Х. Пусть 0 < X < π/2. На рисунке |АМ| = sin x, дуга МВ численно равна центральному углу Х, |BC| = tg x. Тогда Разделим все на Т.к. 2 замечательный предел. Пусть х→∞. Каждое значение х заключено между двумя положительными целыми числами: Если x→∞, то n→∞, тогда По признаку о существовании пределов: 33. Непрерывные функции и их свойства. Точка разрыва функций и их классификация. Пусть функция y=f(x) определена в точке х0 и в некоторой окрестности этой точки. Функция y=f(x) называется непрерывной в точке х0, если существует предел функции в этой точке и он равен значению функции в этой точке: Это означает: - функция определена в точке х0 и в ее окрестности; - функция имеет предел при х→х0 - предел функции в точке х0 равен значению функции в этой точке, т.е. выполняется равенство. Это означает, что при нахождении предела непрерывной функции f(x) можно перейти к пределу под знаком функции, то есть в функции f(x) вместо аргумента х подставить предельное значение х0 Точки разрыва функции – это точки в которых нарушается непрерывность функции. Точка разрыва х0 называется точкой разрыва 1 рода функции y=f(x), если в этой точке существуют конечные пределы функции слева и справа (односторонние пределы) При этом, если: - А1=А2 то точка х0 называется точкой устранимого разрыва; - А1≠А2 то точка х0 называется точкой конечного разрыва. |A1 – A2| называется скачком функции. Точка разрыва х0 называется точкой разрыва 2 рода функции y=f(x), если по крайней мере один из односторонних пределов (слева или справа) не существует, либо равен бесконечности. 34. Производная от функции. Дифференцируемость функции. Дифференциал. Производной функции y=f(x) в точке х0 называется предел отношения приращения функции к приращению аргумента, когда аргумент стремится к нулю. Производная функции f(x) есть некоторая функция f ’(x), произведенная из данной функции. Функция y=f(x), имеющая производную в каждой точке интервала (a;b) называется дифференцируемой в этом интервале. Операция нахождения производной называется дифференцированием. Дифференциал функции y=f(x) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dy (или df(x)). Иначе. Дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной. 35. Правила дифференцирования суммы, произведения, частного функции. ![]() ![]() Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... ![]() Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... ![]() ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... ![]() ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|