Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Преобразования. Связь между координатами образа и прообраза.





Рассмотрим линейное пространство V, в котором каждому элементу x, в силу

некоторого закона поставлен элемент этого же пространства.

- прообраз

- образ

Каждому прообразу соответствует единственный образ.

Каждый образ имеет единственный прообраз.

Линейное преобразование пространства, при котором существует

взаимнооднозначные соответствия.

Блективное преобразование – называется линейным, если выполняются 2 условия.

1.

2.

Рассмотрим n-мерное линейное пространство

Для того, чтобы задать линейные преобразования в этом пространстве достаточно

задать это преобразование для базисных векторов.

Матрица линейного преобразования.

Пусть F – линейное преобразование линейного пространства, переводящая базис

в базис . Т.к.

- базис, то верны соотношения

А – является матрицей линейного преобразования или линейным оператором

пространства.

Связь между координатами образа и прообраза.

В базисе вектор имеет координаты

Линейное преобразование – матрица линейного оператора.

Каждому линейному преобразованию соответствует 1 матрица линейного оператора

и наоборот.

Если имеется квадратная матрица задано линейное преобразование пространства.

17. Связь между координатами одного и того же линейного оператора в

Разных базисах.

Т – матрица перехода от e к e’, то:

Если линейный оператор имеет в базисе невырожденную матрицу Т, матрица этого

оператора в любом другом базисе не будет вырождена.

18. Характеристическое уравнение линейного оператора. Собственные

Векторы линейного оператора и их свойства.

Если в базисе линейный оператор имеет матрицу А, а в базисе (

) оператор имеет матрицу В

λ – произвольное число ≠0

Е – единичная матрица

Если

характеристически многочлен линейного оператора прировнять к 0, получим

характеристическое уравнение линейного оператора.

Собственные векторы линейного оператора

Ненулевой вектор

называется собственным вектором линейного оператора, если

оператор к , получим

этот же ,

умноженный на некоторое к.

к – собственное число оператора А=

Каждый собственный вектор имеет единственное собственное число.

19. Прямая в пространстве. Виды уравнений прямой. Угол между прямыми.

Векторное уравнение прямой.

Положение прямой можно задать по точке и направляющему вектору.

Пусть прямая L задана ее точкой M0(x0;y0;z

0) и направляющим вектором S(m;n;p). Возьмем на прямой L точку M(x;y;z).

Обозначим радиус-векторы точек M и M0 через r и r0.

Тогда уравнение прямой запишется в виде:

где t – скалярный множитель (параметр).

Параметрические уравнения прямой.

Канонические уравнения прямой.

S(m;n;p) – направляющий вектор прямой L. M0(x0;y0

;z0) – точка на прямой.

соединяет M0 с произвольной точкой М.

Уравнение прямой в пространстве, проходящей через две точки.

M1(x1;y1;z1) M2(x2;y2;z2)

В качестве направляющего вектора можно задать вектор

Следовательно:

, тогда

Общее уравнение прямой.

Уравнение прямой как линию пересечения двух плоскостей. Рассмотрим:

Т.к. прямая перпендикулярна векторам n1 и n2 то

направляющий вектор запишется как векторное произведение:

Угол между прямыми.

;

20. Плоскость в пространстве. Виды уравнения плоскостей. Угол между плоскостями.

Уравнение плоскости, проходящей через заданную точку, перпендикулярно данному

вектору.

Пусть плоскость задана точкой M0(x0;y0;z0

) и вектором ,

перпендикулярной этой плоскости.

Возьмем произвольную точку M(x;y;z) и составим вектор

. При любом расположении точки М на плоскости Q

, поэтому .

Общее уравнение плоскости.

· Если D=0, то данному уравнению удовлетворяет точка О (0;0;0)

· Если С=0 то вектор

. Следовательно, плоскость параллельна оси oz, если В=0 – то oy, если А=0 – то

ox.

· Если C=D=0, то плоскость проходит через О (0;0;0), параллельно оси oz.

Аналогично при A=D=0 и B=D=0.

· Если А=В=0 то уравнение примет вид плоскость параллельна плоскости Oxy.

· Если A=B=D=0, то уравнение имеет вид . Это уравнение плоскости Oxy.

Уравнение плоскости, проходящей через три точки

К (х11) М (х22) N (x3;y3)

Возьмем на плоскости точку P (x;y;z).

Составим векторы:

Эти векторы лежат в одной плоскости, следовательно они компланарны:

Уравнение плоскости в отрезках.

Пусть плоскость отсекает на осях отрезки, т.е. проходит через точки:

; ;

Нормальное уравнение плоскости.

21. Угол между прямой и плоскостью. Расстояние от точки до плоскости.

Прямая L:

Пусть φ – угол между плоскостью и прямой.

Тогда θ – угол между и .

Найдем , если

, т.к.

Расстояние от точки до плоскости.

Дано:

M0 (x0;y0;z0)

Расстояние d от точки М0 до плоскости ∆ равно модулю проекции

вектора (где М

1(x1;y1;z­1) - произвольная точка

плоскости) на направление нормального вектора

!!!Если плоскость задана уравнением:

то расстояние до плоскости находится по формуле:

22. Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между

Двумя прямыми.

Уравнение с угловым коэффициентом.

k= tg α – угловой коэффициент.

Если b=0 то прямая проходит через начало координат. Уравнение примет вид

Если α=0, то k = tg α = 0. То прямая пройдет параллельно оси ох.

Если α=π/2, то уравнение теряет смысл. В этом случае уравнение примет

вид и пройдет

параллельно оси оу.

Общее уравнение прямой.

A, B, C – произвольные числа, причем А и В не равны нулю одновременно.

· Если В=0, то уравнение имеет вид

или . Это уравнение

прямой, параллельной оси оу. и проходящей через точку

· Если В≠0, то получаем уравнение с угловым коэффициентом .· Если А=0, то уравнение имеет вид . Это уравнение прямой, параллельной оси ох.

· Если С=0, то уравнение проходит через т. О (0;0).

Уравнение прямой, проходящей через точку, в данном направлении.

т М (х00).

Уравнение прямой записывается в виде .

Подставим в это уравнение точку М

Решим систему:

Уравнение прямой, проходящей через 2 точки.

К (х11) М (х22)

Уравнение прямой в отрезках.

К (а;0); М (0;b)

Подставим точки в уравнение прямой:

Уравнение прямой, проходящей через данную точку, перпендикулярно данному

вектору.

М000).

Возьмем произвольную точку М (х;у).

Т.к. , то

Нормальное уравнение прямой.

Уравнение прямой можно записать в виде:

Т.к. ; , то:

Угол между прямыми.

Дано: прямые L1 и L2 с угловыми коэффициентами

Требуется найти угол между прямыми:

23. Эллипс. Определение. Вывод канонического уравнения.

Эллипсом называется

геометрическое место всех

точек плоскости, сумма

расстояний от которых до

до фокусов есть величина

постоянная, большая, чем расстояние между фокусами.

Пусть М (х;у) – произвольная точка эллипса.

Т.к. MF1 + MF2 = 2a

Т.к.

То получаем

Или

24. Гипербола. Определение. Вывод канонического уравнения.

Гиперболой называется множество всех точек плоскости, модуль разности

расстояний от каждой из которых до фокусов есть величина постоянная.

Пусть M(x;y) – произвольная точка гиперболы. Тогда согласно определению

гиперболы |MF1 – MF2|=2a или MF1 – MF2

=±2a,

25. Парабола. Определение. Вывод канонического уравнения.

Парабола – множество всех точек плоскости, каждая из которых одинаково

удалена от фокуса, и директрисы. Расстояние между фокусом и директрисой

называется параметром параболы и обозначается через р>0.

Пусть M(x;y) – произвольная

точка M с F. Проведем отрезок

MN перпендикулярно

директрисе. Согласно

определению MF=MN.

26. Поверхности вращения.

Поверхность, образованная вращением некоторой плоской кривой вокруг оси,

лежащей в ее плоскости, называется поверхностью вращения. Пусть некоторая

кривая L лежит в плоскости Oyz. Уравнение этой кривой запишутся в виде:

Найдем уравнение поверхности, образованной вращением кривой L вокруг оси Oz.

Возьмем на поверхности точку

M (x;y;z). Проведем через точку

М плоскость, перпендикулярную

оси oz, и обозначим точки

пересечения ее с осью oz

и кривой L соответственно O1 и N.

Обозначим координаты точки

N (0;y1;z1). Отрезки O1M и O1N

являются радиусами одной и той же окружности. Поэтому O1M = O1

N. Но O1M = (x2+y2)0.5, O1

N=|y1|.

Следовательно, |y1|=(x2+y2)0.5 или y1=±(x2+y2)0.5. Кроме того, очевидно, z1=z.

Следовательно

искомое уравнение поверхности вращения, ему удовлетворяют координаты любой

точка М этой поверхности и не удовлетворяет координаты точек, не лежащих на

поверхности вращения.

27. Поверхности 2-го порядка. Эллипсоид, Гиперболоид.

Эллипсоид.

Рассмотрим сечение поверхности с плоскостями, параллельными xOy. Уравнения

таких плоскостей z=h, где h – любое число. Линия, получаемая в сечении,

определяется двумя уравнениями:

Если |h|>c, c>0, то точек пересечения поверхности с плоскостями z=h нет.

Если |h|=c, т.е. h=±c, то

. Линия пересечения вырождается в две точки (0;0;с) и (0;0;-с). Плоскости z=c и

z=–c касаются поверхности.

Если |h|<c, то уравнения можно переписать в виде:

Линия пересечения есть эллипс с полуосями.

Эллипсоид – замкнутая овальная поверхность, где a,b,с – полуоси. Если все

они различны, то эллипсоид называется трехосным. Если какие-либо две

полуоси равны, то тело называется эллипсоид вращения, если a=b=c, то тело

называется сферой x2+y2+z2=R2

Однополостный гиперболоид.

Пересекая поверхность плоскостью z=h, получим линию пересечения, уравнения

которой имеют вид.

Полуоси достигают своего наименьшего значения при h=0, a1=a, b1

=b. При возрастании |h| полуоси будут увеличиваться.

Если пересекать поверхность плоскостями x=h или y=h, то в сечении получим

гиперболы. Найдем линию пересечения поверхности с плоскостью Oyx, уравнение

которой x=0. Эта линия пересечения описывается уравнениями:

Поверхность имеет форму бесконечно расширяющейся трубки и называется

однополостным гиперболоидом.

Двуполостный гиперболоид.

Если поверхность пересечь плоскостями z=h, то линия пересечение уравнениями

Если |h|<c, то плоскости z=h не пересекаются.

Если |h|=c, то плоскости h=±c касаются данной поверхности соответственно в

точках (0;0;с) и (0;0;-с).

Если |h|>c, то уравнения можно переписать в виде:

Эти уравнения определяют эллипс, полуоси которого возрастают с ростом |h|.

У обеих гипербол действительной осью является ось oz. Метод сечения позволяет

изобразить поверхность, состоящую из двух полостей, имеющих форму двух

неограниченных чаш. Поверхность называется двуполостным гиперболоидом.

28. Поверхности 2-го порядка. Параболоиды.

Эллиптический.

При пересечении поверхности координатами плоскостями Oxz и Oyz получается

соответственно параболы

и . Таким образом,

поверхность, определяемая уравнением, имеет вид выпуклой, бесконечно

расширяющейся чаши.

Гиперболический.

Рассечем поверхность плоскостями z=h. Получим кривую

которая при всех h≠0 является гиперболой. При h>0 ее действительные оси

параллельны оси Ox, при h<0 – параллельные оси Oy. При h=0 линия

пересечения распадается на пару пересекающихся прямых:

При пересечении поверхности плоскостями, параллельности плоскости Oxz (y=h),

будут получаться параболы, ветви которых направлены вверх.

29. Поверхности 2-го порядка. Конусы и цилиндры.

Конус.

Поверхность, образованная прямыми линиями, проходящими через данную точку Р и

пересекающими данную плоскую линию L (не проходящую через Р) называется

конической поверхностью или конусом. При этом линия L называется

направляющей конуса, точка Р – ее вершиной, а прямая, описывающая

поверхность, называется образующей.

- уравнение конуса

Цилиндр.

Поверхность, образованная движением прямой L, которая перемещается в

пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую

кривую К, называется цилиндром. При этом кривая К называется

направляющей цилиндра, а прямая L – образующая.

- уравнение цилиндра

30. Исследование кривой второго порядка по ее уравнению без

Произведения координат.

Уравнение вида Ax2+Cy2+2Dx+2Ey+F=0 всегда определяет либо

окружность (при А=С), либо эллипс (при А*С>0), либо гиперболу (при

А*С<0), либо параболу (при А*С=0), при этом возможны случаи вырождения: для

эллипса (окружности) – в точку или мнимый эллипс (окружность), для гиперболы –

в пару пересекающихся прямых, для параболы – в пару параллельных прямых.

Общее уравнение второй степени с двумя неизвестными: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0

Коэффициент В с произведением координат преобразовывает уравнение путем

поворота координатных осей.

31. Определение предела числовой функции. Односторонние пределы.

Свойства пределов.

Число А называется пределом функции y=f(x) в точке х0, если для любой

последовательности допустимых значений аргумента xn, n?N (xn

≠x0), сходящейся к х0

(т.е. ),

последовательность соответствующих значений функции f(xn), n?N,

сходится к числу А, т.е.

. Геометрический смысл предела этой функции, что для всех точек х, достаточно

близких к точке х0, соответствующие значения функции как угодно мало

отличается от числа А.

Односторонние пределы.

Считается, что х стремится к х0 любым способом: оставаясь меньшим,

чем х0 (слева от х0), большим, чем х0 (справа

от х0), или колеблясь около точки х0.

Число А1 называется пределом функции y=f(x) слева в

точке х0, если для любого ε<0 существует число

σ=σ(ε)>0 такое, что при х?(x0-σ;x0

), выполняется неравенство |f(x)-A1|<ε

Пределом функции справа называется

Свойства пределов.

1) если предел функция равна этому числу плюс б.м.

ε – сколь угодно малое число

|f(x)-a|=α; f(x)=a+ α

2) сумма конечного числа б.м. чисел есть б.м. число

3) предел произведения равен произведению пределов

4) константы можно выносить за знак предела

5)

32. Замечательные пределы.

1 замечательный предел.

Возьмем круг радиуса 1, обозначим

радианную меру угла MOB через Х.

Пусть 0 < X < π/2. На рисунке |АМ| = sin x, дуга МВ численно равна

центральному углу Х, |BC| = tg x. Тогда

Разделим все на и получим:

Т.к. , то по признаку существования пределов следует .

2 замечательный предел.

Пусть х→∞. Каждое значение х заключено между двумя положительными

целыми числами:

Если x→∞, то n→∞, тогда

По признаку о существовании пределов:

33. Непрерывные функции и их свойства. Точка разрыва функций и их классификация.

Пусть функция y=f(x) определена в точке х0 и в некоторой окрестности

этой точки. Функция y=f(x) называется непрерывной в точке х0, если

существует предел функции в этой точке и он равен значению функции в этой

точке:

Это означает:

- функция определена в точке х0 и в ее окрестности;

- функция имеет предел при х→х0

- предел функции в точке х0 равен значению функции в этой точке, т.е.

выполняется равенство.

Это означает, что при нахождении предела непрерывной функции f(x) можно перейти

к пределу под знаком функции, то есть в функции f(x) вместо аргумента х

подставить предельное значение х0

Точки разрыва функции – это точки в которых нарушается непрерывность функции.

Точка разрыва х0 называется точкой разрыва 1 рода

функции y=f(x), если в этой точке существуют конечные пределы функции слева и

справа (односторонние пределы)

и

При этом, если:

- А12 то точка х0 называется точкой устранимого разрыва;

- А1≠А2 то точка х0 называется точкой конечного разрыва.

|A1 – A2| называется скачком функции.

Точка разрыва х0 называется точкой разрыва 2 рода

функции y=f(x), если по крайней мере один из односторонних пределов (слева или

справа) не существует, либо равен бесконечности.

34. Производная от функции. Дифференцируемость функции. Дифференциал.

Производной функции y=f(x) в точке х0 называется предел отношения

приращения функции к приращению аргумента, когда аргумент стремится к нулю.

Производная функции f(x) есть некоторая функция

f ’(x), произведенная из данной функции.

Функция y=f(x), имеющая производную в каждой точке интервала (a;b) называется

дифференцируемой в этом интервале.

Операция нахождения производной называется дифференцированием.

Дифференциал функции y=f(x) в точке х называется главная часть ее

приращения, равная произведению производной функции на приращение аргумента, и

обозначается dy (или df(x)).

Иначе. Дифференциал функции равен произведению производной этой

функции на дифференциал независимой переменной.

35. Правила дифференцирования суммы, произведения, частного функции.







Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.