Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Базовые технологии в химической промышленности





Химическая промышленность объединяет производства, в которых преобладают химические методы переработки сырья и материалов. Сюда входят предприятия, производящие неорганические кислоты, соли, щелочи, минеральные удобрения, каучуки, смолы, пластические массы и многие другие продукты. В настоящее время трудно найти область народного хозяйства, где бы ни использовались достижения химической промышленности.

Химические материалы широко применяются в машиностроении (пластмассы, лаки, клеи, герметики, резины), сельском хозяйстве (удобрения и ядохимикаты), здравоохранении (лекарства, витамины, материалы для хирургии) и т.д.

В отрасль химической промышленности входят разнообразные предприятия, отличающиеся как технологическими процессами, так и конечными продуктами производства.

Всю химическую продукцию можно разделить на следующие классификационные группы:

1. Неорганические вещества, включающие следующие основные продукты: аммиак; неорганические кислоты (серная, азотная, соляная); содовые продукты; щелочи; минеральные удобрения и ядохимикаты; силикаты (строительная керамика, вяжущие вещества, стекло).

2. Органические вещества: продукция переработки твердых топлив; продукция переработки жидких топлив; продукция переработки газообразных топлив.

3. Продукты органического синтеза: пластические массы; химические волокна; каучук и резина; лакокрасочные материалы.

4. Химические реактивы и особо чистые вещества.

5. Медикаменты и химико-фармацевтическая продукция.

Продукция химической промышленности используется в ряде отраслей народного хозяйства как исходный материал. Поэтому качество химических продуктов должно соответствовать требованиям государственных стандартов (ГОСТов). Качество химической продукции зависит как от качества применяемого исходного сырья, так и в значительной степени от уровня технологии ее производства.

Рассмотрим технологию получения трех групп химических продуктов, нашедших наиболее широкое применение в различных областях народного хозяйства: минеральных кислот, полимерных материалов и продуктов переработки топлива.

Технология производства неорганических кислот.

Наиболее применяемыми неорганическими кислотами являются серная, азотная и соляная. Из них серной принадлежит особое место. По объему производства и области применения серная кислота занимает одно из первых мест среди химической промышленности. Серная кислота используется в самых разнообразных отраслях производства. Она служит одним из главных продуктов, определяющих развитие химической промышленности, вот почему ее часто называют "хлебом химии".

В химической промышленности серную кислоту используют для производства удобрений, получения красителей, пластмасс, химических волокон, при производстве нефтепродуктов — жидких топлив, смазочных масел и др.

В металлургии серная кислота используется при выделении металлов из руд; в машиностроении - при травлении металлов; в пищевой промышленности - при получении патоки, крахмала, спирта; в текстильной — при отбеливании тканей и т.д.

По химическому составу серная кислота представляет собой соединение серного ангидрида S03 с водой. При этом если на один моль серного ангидрида приходится моль воды, то образуется безводная серная кислота H2S04. Если соотношение SO3: H20 < 1, то образуется разбавленная серная кислота, если соотношение S0з: Н20 > 1, то — раствор серного ангидрида в серной кислоте, называемый олеумом. В промышленности серная кислота выпускается в виде разбавленной, концентрированной и олеума.

По внешнему виду серная кислота - это бесцветная маслоподобная жидкость с удельным весом 1,84 кг/см3. Исходным веществом при ее получении служит сернистый ангидрид S02, образующийся при обжиге различных серосодержащих продуктов.

Большое значение имеет использование отходящих газов цветной металлургии, образующихся при переработке сернистых руд, в качестве исходного сырья для получения серной кислоты, что позволяет снизить ее себестоимость, а утилизация их дает возможность улучшить условия труда на металлургических заводах. Сернистый газ можно также получить из сероводорода. Последний в значительных количествах выделяется из газов нефтеперерабатывающей промышленности. Самым лучшим сырьем для производства S02 является элементарная сера. При ее сжигании образуется чистый концентрированный сернистый газ, не загрязненный примесями, что упрощает его очистку при производстве серной кислоты. Однако чистая сера — это слишком дорогое сырье, вследствие чего себестоимость серной кислоты, получаемой из серы, в два раза выше себестоимости H2S04, получаемой из колчедана FeSO2.

В настоящее время в промышленности серную кислоту получают двумя способами — нитрозным и контактным. В обоих случаях сущность процесса сводится к окислению сернистого газа S02 до серного S0з и соединению трехокиси с водой.

В обычных условиях сернистый газ кислородом воздуха не окисляется, поэтому процесс окисления осуществляется либо при помощи азота, либо в присутствии твердого катализатора. Способ окисления и определяет технологию процесса. При нитрозном способе двуокись окисляют до S0з при помощи нитрозной смеси, состоящей из окиси и двуокиси азота, взятых в соотношении 1:1. Контактный способ состоит в окислении двуокиси в присутствии твердого катализатора.

Более старым является нитрозный способ производства серной кислоты. Нитрозный способ трудно поддается автоматизации. Кроме того, получаемая кислота имеет концентрацию не более 75— 77% и загрязнена примесями. Эти недостатки привели к тому, что нитрозный способ производства серной кислоты все больше утрачивает свое значение, а преимущественное развитие получает контактный метод.

Технология контактного процесса предусматривает окисление сернистого газа в присутствии твердых катализаторов. До 20—30-х годов в качестве катализатора использовали платину. Затем она была заменена значительно более дешевым и устойчивым катализатором, изготавливаемым из пятиокиси ванадия V2O5.

При контактном способе производства может быть получена серная кислота практически любой концентрации и высокой степени чистоты. Такая серная кислота может быть использована в любом производстве.

Нитрозная кислота, выпускаемая по устаревшей технологии, используется при производстве сельскохозяйственных удобрений, где не требуется высокой концентрации и чистоты исходных продуктов.

Азотная кислота по значению и объему производства занимает второе место после серной. Она широко применяется при производстве удобрений, взрывчатых веществ, ракетного топлива, синтетических красителей, пластмасс, нитроцеллюлозы, синтетических волокон и т.д. По внешнему виду азотная кислота представляет собой тяжелую бесцветную жидкость с удельным весом 1,52 г/см3, химический состав ее выражается формулой НNОз.

Промышленное получение азотной кислоты осуществляется окислением синтетического аммиака. Процесс осуществляется в три стадии:

1) окисление аммиака кислородом воздуха до окиси азота в присутствии катализатора (платины и ее сплавов);

2) окисление окиси азота до двуокиси;

3) поглощение N02 водой с образованием азотной кислоты.

Окисление аммиака до окиси азота протекает с достаточной скоростью лишь при высоких температурах. При этом возможны побочные реакции, приводящие к выделению не окиси азота, а свободного азота или его закиси. Чтобы предотвратить эти реакции, необходимо вести окисление при температурах не выше 700—800 °С в присутствии катализатора. Последний изготавливается в виде сеток из очень тонкой проволоки диаметром 0,06—0,09 мм.

Данный способ производства азотной кислоты позволяет получить кислоту концентрацией 48—50%. Для получения более концентрированного продукта процесс ведут при повышенном давлении. Применение давления до 10 ат. позволяет повысить концентрацию азотной кислоты до 60—62%.

В настоящее время в производстве различают три технологические схемы получения азотной кислоты:

1) под атмосферным давлением;

2) под давлением до 10 ат;

3) комбинированная.

Схема под давлением в принципе не отличается от схемы под атмосферным давлением, но объем окислительных и абсорбционных аппаратов значительно меньше. Процесс окисления окиси азота до двуокиси протекает намного быстрее и возрастает степень абсорбции окислов водой. Вместе с тем при увеличении давления в процессе окисления аммиака возрастают потери дорогостоящего катализатора, что является недостатком этой схемы.

Комбинированный способ позволяет использовать достоинства обеих схем. При нем окисление аммиака осуществляется при атмосферном давлении, что резко снижает потери платины, а окисление нитрозных газов до двуокиси и абсорбция их проводятся под давлением. Это позволяет получать кислоту концентрацией 60 — 62%. На установках комбинированного способа применяют давление до 4—9 ат.

Концентрированную азотную кислоту, содержащую 97 — 98% HNO3, получают путем упаривания разбавленной азотной кислоты в присутствии серной кислоты, поглощающей воду. Применяется также прямой синтез концентрированной HNO3. В этом случае двуокись азота охлаждают до 8 °С. Она при этом сжижается с образованием димера N204. Последний подается в аппараты, где под давлением 50 ат и температуре 75 °С в присутствии воды и кислорода образуется концентрированная азотная кислота:

2N2O4 + 2Н2О + О2 = 4HNO3.

Масштабы производства соляной кислоты меньше по сравнению с серной и азотной. Ее употребляют при производстве различных хлористых солей, в процессе гидролиза клетчатки, при травлении металлов, при пайке, лужении и т.д.

Соляная кислота представляет собой раствор хлористого водорода в воде. Хлористый водород НСI — это бесцветный газ с резким запахом, хорошо растворимый в воде. В промышленности он может быть получен двумя способами: прямым синтезом из Н2 и СI2 и при хлорировании органических соединений.

Наибольшее распространение в промышленности получил метод прямого синтеза хлористого водорода из газообразных хлора и водорода, получаемых при электролизе растворов поваренной соли.

Реакция между хлором и водородом СI2 + Н2 = 2НСI протекает только на свету и при нагревании. Она относится к типу цепных и может привести к взрыву, если смешивать большие объемы исходных компонентов. Спокойное течение реакции обеспечивается непрерывным поступлением струи газов в зону высокой температуры (до 2400 °С). Процесс ведется в специальных печах с охлаждением воздухом или водой.

Большое количество хлористого водорода образуется в процессе синтеза органических соединений, например, при хлорировании бензола для получения хлорбензола:

C6H6 + СI2 = С6Н5СI + НСI.

Для характеристики эффективности процессов в химической промышленности используют ряд показателей:

• степень превращения X — показатель, характеризующий полноту использования исходного сырья и степень его превращения в готовый продукт, которая рассчитывается по формуле:

,

где Р — количество взятого в процессе исходного продукта;

Р0 — количество этого продукта, прореагировавшего в ходе химического процесса;

• выход продукта Ф — это отношение количества полученного вещества Р к максимально возможному Рmax рассчитанному по уравнению химической реакции:

;

• производительность П, т.е. количество продукта, выработанного в единицу времени:

,

где А — количество выработанного продукта;

Т — время работы;

• интенсивность П - это производительность, отнесенная к объему или площади поперечного сечения аппарата:

или ,

где П — производительность;

S — площадь сечения аппарата;

V — объем аппарата;

• себестоимость продукции: а) цеховая; б) производственная; в) полная.

Цеховая себестоимость представляет собой затраты цеха, связанные с производством продукции. Производственная себестоимость помимо затрат цехов включает общезаводские расходы. Полная себестоимость складывается из производственной себестоимости и непроизводственных расходов, включающих в основном расходы, связанные с реализацией продукции.

При расчете производственной себестоимости учитываются затраты на:

1) сырье, основные материалы, покупные изделия и полуфабрикаты;

2) вспомогательные материалы;

3) топливо;

4) энергию;

5) амортизацию основных фондов;

6) основную и дополнительную заработную плату;

7) отчисления на социальное страхование;

8) общезаводские расходы.

Наибольшие расходы при этом, как правило, приходятся на сырье. В среднем по химической промышленности затраты на сырье составляют 60—70% себестоимости, а на топливо и энергию — около 10%.

Производство полимерных материалов. Полимерными материалами называются химические соединения, молекулы которых состоят из десятков и сотен атомов. К полимерам относится большая группа материалов. Сюда входят целлюлоза, каучуки, пластмассы, химические волокна, лаки, клеи, пленки, различные смолы и др.

По своему происхождению полимерные материалы делятся на природные и синтетические. Первые были известны очень давно. Это всевозможные природные смолы типа щелока и канифоли, крахмал, белки, натуральный каучук и др. Синтетические полимеры были впервые синтезированы в прошлом веке, но нашли широкое применение начиная с 30-40-х годов нашего столетия.

Все полимерные материалы являются высокомолекулярными соединениями. В отличие от обычных веществ, молекулы которых состоят из единиц или десятков атомов (Н20, НСI, С2Н50Н и т.д.), молекулы полимеров содержат сотни и тысячи атомов. Такие молекулы называются макромолекулами и состоят из большого числа повторяющихся звеньев.

Синтетические полимеры, получают по реакциям полимеризации и поликонденсации. В реакцию полимеризации вступают органические вещества, содержащие в молекуле двойные связи, например, этилен СН2 = СН2. Под воздействием света, тепла, давления или в присутствии катализаторов молекулы веществ за счет раскрытия двойных связей соединяются друг с другом, образуя полимер, химический состав которого, в случае полимеризации этилена, может быть выражен формулой: (—СН2 — СН2) n, n - где степень полимеризации, т.е. число, показывающее, сколько молекул мономера объединилось при полимеризации в молекулы полимера. Характерной особенностью реакций полимеризации является отсутствие побочных продуктов. В процессе реакций поликонденсации полимерные вещества образуются с выделением побочных продуктов. Например, при получении фенолформальдегидных смол в реакцию вступают два мономерных продукта - фенол и формальдегид, в результате образуется полимер и выделяется вода.

Среди полимерных материалов особое место принадлежит пластмассам. Пластмассы представляют собой материал, в состав которого в качестве основного компонента входят высокомолекулярные смолы. При нагревании они способны переходить в пластическое состояние, формоваться под действием внешних сил и сохранять полученную форму при эксплуатации. За короткий срок они нашли широкое применение в таких ведущих отраслях промышленности, как машиностроение, электроника, радиотехника и др. Такое внедрение пластмасс в различные области обусловлено рядом причин.

Во-первых, это широкий комплекс уникальных свойств, присущих пластмассам. Они имеют небольшой удельный вес. В среднем пластмассы в 2 раза легче алюминия, в 5 - 8 раз легче стали, бронзы, а некоторые виды пенопластов в 25 раз легче пробки. Легкость этих материалов определяет экономическую эффективность их использования в авиа-, авто- и судостроении, железнодорожном транспорте и др. Химическая стойкость пластмасс позволяет использовать их в химическом машиностроении в качестве конструкционных антикоррозионных материалов, с успехом заменяющих дорогостоящие металлы и сплавы. Все пластмассы обладают диэлектрическими свойствами. Сочетание их с механической прочностью и теплостойкостью вплоть до 200 — 300 °С делает пластмассы основным электроизоляционным и конструкционным материалом электротехники. Многие пластмассы обладают низким коэффициентом трения и весьма малым износом. Их используют при изготовлении подшипников. Другие, наоборот, отличаются высокими фрикционными свойствами и применяются в качестве тормозного материала. Все эти свойства присущи пластмассам с исключительным разнообразием в сочетании, и это в значительной мере определило тот факт, что пластмассы в наше время стали незаменимыми материалами в самых разнообразных отраслях народного хозяйства.

Во-вторых, для получения пластмасс существует практически неограниченная сырьевая база. Основу пластмасс - синтетические смолы - получают путем химического синтеза, простейших веществ, извлекаемых из столь доступного сырья, как уголь, известь, воздух, нефть, природные газы.

Одним из главных преимуществ использования пластмасс по сравнению с другими материалами является простота переработки их в изделия. Присущие им пластические свойства позволяют с помощью пресс-автоматов, автоматов для литья и др. изготавливать в час сотни деталей сложных конфигураций. При этом расход материалов минимальный (нет отходов в стружку), уменьшается количество станков и обслуживающего персонала, сокращается расход электроэнергии.

Строительство предприятий по производству и переработке пластмасс требует значительно меньших капиталовложений и обходится дешевле строительства предприятий, производящих материалы, заменяемые пластмассами.

Все вышеперечисленные достоинства пластмасс определили высокую технико-экономическую эффективность использования их и способствовали тому, что в настоящее время. Эти материалы являются не только заменителями дорогостоящих металлов и сплавов, но и самостоятельными уникальными конструкционными материалами.

По своему составу пластмассы делятся на простые и сложные. Первые состоят только из высокомолекулярной смолы, например, полиэтилена, полистирола и др. Сложные пластмассы содержат, кроме смолы, ряд других компонентов — наполнители, пластификаторы, красители, стабилизаторы и др.

Высокомолекулярные смолы являются основой любой пластмассы, они связывают воедино все компоненты и поэтому называются связующими. Наполнители - это непластичные вещества, вводимые в состав пластмасс для улучшения их механических, химических, электроизоляционных свойств. В качестве их используют муку, гипс, сажу, графит, тальк, бумагу, асбестовое и стеклянное волокно и др. Введение их в состав пластмасс снижает стоимость изделий. Пластификаторы - это вещества, повышающие пластические свойства пластмасс и, следовательно, улучшающие процесс формования их в готовые изделия. В качестве пластификаторов используют камфару, касторовое масло, дибутилфталат и др. Красители вводят в состав пластмасс для придания изделиям определенной окраски. Стабилизаторы - вещества, предотвращающие старение пластмасс.

По своему отношению к температуре пластмассы делятся на термопластичные и термореактивные. К термореактивным относятся пластмассы, которые при нагревании до определенной температуры размягчаются, а затем переходят необратимо в неплавкое и нерастворимое состояние. Этот переход обусловлен химическими превращениями, происходящими в пластмассе при нагревании. Термореактивные пластмассы после отвердевания не могут быть переработаны повторно и поэтому называются необратимыми.

Термопластичными называются пластмассы, которые могут при нагревании размягчаться, а при охлаждении затвердевать без изменения своих первоначальных свойств. Такие пластмассы могут перерабатываться многократно и поэтому называются обратимыми. Примером термопластичных пластмасс могут служить: полиэтилен, полистирол, органическое стекло, фторопласт, винипласт и др; термореактивных пластмасс - фенопласты.

Существуют различные способы переработки пластмасс, но все они основаны на способности этих материалов в определенных условиях приобретать пластичность и текучесть, формоваться и затем сохранять приданную им форму. Наиболее распространенными способами переработки пластмасс являются прессование, литье под давлением, экструзия и формование из листа.

Методом прессования перерабатываются главным образом термореактивные пластмассы. Изготовление изделий осуществляется на механических или гидравлических прессах в специальных пресс-формах. Последние имеют внутреннюю полость, соответствующую форме и размерам будущего изделия, и обычно состоят из двух разъемных частей - матрицы и пуансона. Матрица укрепляется на нижней плите пресса, пуансон - на подвижном ползуне пресса. Отмеренное количество пресс-порошка, нагретого до 90—120 °С, подается в матрицу, имеющую температуру, необходимую для прессования. Под воздействием тепла от нагретой матрицы полимер размягчается и приобретает необходимую пластичность. Под давлением пуансона размягченный материал заполняет полость пресс-формы. При этом в термореактивной смоле происходят сложные химические превращения, приводящие к образованию неплавкого материала. Затвердевание изделия происходит в форме, находящейся под давлением. После определенной выдержки изделие извлекается из.пресс-формы. Температура, давление и время прессования определяются свойствами прессуемых материалов.

При переработке термопластичных пластмасс чаще применяют литье под давлением. Оно осуществляется на специальных литьевых машинах. Порошкообразный или гранулированный полимер подается в обогреваемый цилиндр литьевой машины, где он расплавляется. Образовавшаяся жидкая масса под давлением поршня через небольшое отверстие-литник выдавливается из цилиндра в полость сомкнутой пресс-формы, охлаждаемой водой. При охлаждении термопластичный полимер застывает и приобретает вид детали. Этим методом могут быть получены изделия сложной формы, высокой степени чистоты и точности. Кроме того, его отличает высокая производительность.

Метод выдавливания, или экструзия, применяется для переработки термопластичных и термореактивных материалов в листы, пленки, стержни, трубы, шланги. Такие изделия можно получать при непрерывном процессе формования в специальных машинах-экструдерах. Последние представляют собой червячные прессы. Исходный материал в виде порошка или гранул подается через загрузочную воронку в цилиндрическую камеру пресса, где вращается близко прилегающий к стенкам шнек (червяк). При вращении шнека материал продвигается в обогреваемую часть камеры, где он размягчается до пластичного состояния, а затем продавливается через формующую головку экструдера - мундштук. Профиль и размеры выходного отверстия мундштука определяют форму и размеры готового изделия.

Формование из листа применяется при переработке термопластичных пластмасс в изделия сложной конфигурации с малой толщиной стенок. Технология формования аналогична листовой штамповке. Заготовка в виде листа пластмассы нагревается до пластичного состояния и подается в матрицу. Под давлением пуансона материал деформируется, приобретая форму полости штампа. Выдержка заготовки в штампе продолжается до охлаждения материала и фиксирования приданной формы.

Кроме рассмотренных способов при переработке пластмасс в изделия, применяют формовку, штамповку, механическую обработку резанием, выдувание пустотелых изделий — бутылей, канистр, флаконов и др. Все способы характеризуются коротким технологическим циклом, небольшими затратами труда и легкостью автоматизации.

Пластмассы, в зависимости от химической природы и методов получения смол, входящих в их состав, подразделяются на четыре класса.

Пластмассы на основе высокомолекулярных соединений, полученных цепной полимеризацией. К ним относятся пластмассы на основе полимеров этилена, винилового спирта и их производных и др.

Пластмассы на основе высокомолекулярных соединений, полученных поликонденсацией и ступенчатой полимеризацией. К ним относятся пластмассы на основе фенолоальдегидных (фенопласты) и аминоформальдегидных (аминопласты) смол, кремнийорганических соединений и др.

Пластмассы, содержащие природные полимеры. К ним относятся простые и сложные эфиры целлюлозы (целлулоид, этроны), белковые вещества (галлалит) и др.

Пластмассы на основе природных и нефтяных асфальтов, а также смол, получаемых деструкцией различных органических веществ.

Пластмассы широко применяются в народном хозяйстве: в машиностроении, приборостроении, электро- и радиотехнике, быту и т.п. Объясняется это тем, что они сочетают в себе ряд ценных свойств: являются теплоизоляционными материалами, хорошими диэлектриками, могут быть оптически- и радиопрозрачными, упругими или эластичными. Пластические массы имеют низкую плотность, коррозионную стойкость, легко формуются в изделия, а некоторые из них по механическим свойствам вполне могут заменять металлы и сплавы. Стоимость пластмасс ниже стоимости металлов. Однако пластмассы имеют низкую теплостойкость и подвержены старению. Большинство из них могут работать в интервале температур 60—150 °С и только некоторые — до 300 °С.

Химические волокна - это полимерные материалы, имеющие форму тел, длина которых во много раз превышает размеры их поперечного сечения. Задолго до получения химических волокон человек пользовался натуральными, полчаемыми из растений, - хлопка, льна, джута, а также волокнами животного происхождения — шелк, шерсть. Все натуральные волокна имеют низкую температуру эксплуатации, невысокие механические свойства, высокую себестоимость. Поэтому с каждым годом все большее значение приобретают химические волокна. Они делятся на две группы - искусственные и синтетические волокна. Первые получают из природных высокомолекулярных соединений — целлюлозы, козеина и др., вторые - из высокомолекулярных соединений, полученных путем химических реакций из иономеров. Химические волокна превосходят натуральные по прочности, они легче по весу, не подвержены гниению. Себестоимость их значительно ниже, чем у натуральных.

Главным сырьем для производства искусственных волокон служит целлюлоза. Это природный полимер, входящий в состав растительных клеток и образующий твердый остов растений. В сухой древесине содержится 45 — 55% целлюлозы. Наиболее ценные ее сорта получают из хвойных деревьев. Путем химической обработки целлюлозы получают такие волокна, как вискозное и ацетатное, широко используемые как для получения различных сортов тканей, так и для других целей: например, ацетатное волокно обладает диэлектрическими свойствами и применяется в качестве электроизолятора.

Синтетические волокна получают из синтетических высокомолекулярных смол. Число их непрерывно возрастает. Большую группу составляют полиамидные волокна, куда входят капрон, нейлон, энант. Они характеризуются высокой прочностью, эластичностью, стойкостью к действию щелочи, электроизоляционной стойкостью. К группе полиэфирных волокон относится лавсан. Он используется для производства тканей, трикотажных изделий, электроизоляционных материалов. Отличается высокой механической прочностью и устойчивостью к действию повышенных температур.

Технологический процесс получения химических волокон включает следующие стадии:

1) получение исходного материала,

2) приготовление прядильной массы,

3) формование волокна,

4) отделка.

Для получения исходного материала используют традиционные методы синтеза высокомолекулярных смол. Однако, для получения волокон используются очень чистые смолы, способные либо растворяться в каких либо растворителях, либо плавиться. Для очистки исходное сырье подвергают фильтрованию.

Приготовление прядильной массы состоит в растворении полимера в растворителе или расплавлении его. Иногда на этой стадии добавляют красители для получения нужного цвета.

Формование волокна производится на специальном оборудовании путем продавливания прядильной массы через фильеры – мельчайшие отверстия диаметром 0,04 мм. Образующиеся тонкие струйки раствора или расплава отверждают путем охлаждения или химическим способом с использованием специальных отвердителей. Образующиеся нити сматывают на приемные катушки.

Отделка волокна состоит в обработке волокна различными реагентами, сушке, кручении, отбелке, вытягивании, термообработке, перемотке, сортировке.

Каучуки являются типичными представителями высокомолекулярных (полимерных) соединений. Каучук является основной составной частью резины. Народнохозяйственное значение каучука очень велико. Громадные и все возрастающие количества каучука потребляют автомобильная, авиационная и тракторная промышленности. Большое количество его идет на изготовление приводных ремней и транспортерных лент, шлангов и рукавов, электроизоляционных тканей, изделий широкого потребления (обувь, спортивные товары, игрушки), изделий санитарии и гигиены и многих других. Ассортимент резинотехнических изделий превышает 50 тыс. наименований.

Каучук бывает растительного происхождения (натуральный) и синтетический.

Натуральный каучук содержится в млечном соке (латексе) каучуконосных растений. Латекс содержит около 35% природного каучука и 60% воды. По химической природе натуральный каучук (НК) является непредельным углеводородом - линейный полимер изопрена:

СН2 — С = СН — СН2

 
 


СН3

Макромолекулы НК хотя и имеют линейную структуру, но они не вытянуты в линию, а сильно изогнуты и даже скру­чены в клубки. Такое строение каучука обусловливает воз­можность получения из него резины с высокой механической прочностью и эластичностью в широком интервале темпера­тур. Будучи непредельным углеводородом (ненасыщенным ациклическим) каучук способен к реакциям присоединения. Наибольшей эластичностью НК обладает при температуре 15 — 20 °С. С понижением температуры каучук становится хрупким. При 180—200 °С каучук плавится, а свыше 200 °С разлагается с частичным выделением изопрена. Обладая малой стойкостью к повышенным и пониженным температурам и к действию ряда растворителей, натуральный каучук, как и многие синтетические каучуки, в чистом виде для практических целей почти не применяются.

Интересно отметить, что в природе существует другой пространственный изомер натурального каучука (трансизомер), известный под названием гуттаперча. В чистом виде гуттаперча применяется для покрытия электрокабелей, изготовления клеев и др.

Химический состав и строение, а следовательно, и физико-химические свойства синтетических каучуков могут быть весьма разнообразны и сильно отличаться от свойств натурального каучука. В этом заключается значительное преимущество синтетических каучуков, так как, изменяя состав и строение каучука, ему можно придать такие свойства, которыми не обладает натуральный каучук.

Основным сырьем для производства синтетического каучу­ка являются попутные газы нефтепереработки, этиловый спирт и ацетилен. Основные методы получения — полимери­зация и поликонденсация.

При переработке каучуки превращают в резину. Важнейшие свойства резины: высокая эластичность, сопро­тивление к истиранию, изгибам, амортизирующая способ­ность, газо- и водонепроницаемость, высокие электрои­золяционные свойства и стойкость к агрессивным средам. Для получения резины к каучукам добавляют ряд компо­нентов (ингредиентов) и полученную смесь подвергают вулканизации. Вулканизация заключается в образовании мостиков между линейными молекулами каучука и получе­нии трехмерной пространственной молекулярной структу­ры. Такая структура приводит к повышению термической стойкости и прочности материала, к уменьшению его рас­творимости и увеличению химической стойкости. Наиболее распространенным вулканизатором является сера. Для по­лучения мягких резин вводят 2% серы от массы каучука, полутвердых - 7% и твердых — около 30%. Некоторые каучуки вулканизируются окислами металлов, кислородом и другими веществами. Ускорителями вулканизации служат сернистые и азотные соединения, в состав резиновой смеси для защиты от старения и увеличения срока службы рези­новых изделий добавляют противостарители. Наполнители, применяемые при производстве резины, разделяются на ак­тивные и инертные. Активные — сажа, цинковые белила, каолин - применяются для повышения прочности резиновых изделий; инертные наполнители - мел, тальк и др. - вводятся в состав резины для их удешевления.

Мягчители (пара­фин, вазелиновое масло, стеарин, канифоль) облегчают переработку резины в изделия. Красители придают резине соответствующую окраску.

Для облегчения обработки смесей, увеличения химической стойкости резины, снижения стоимости изделий в состав резиновых смесей вводят от 10 (в шинном производстве) до 100% (при изготовлении резиновых ковриков) регенерата каучука.

Изготовление резиновых изделий осуществляется различ­ными способами: листы получают на каландрах; трубки, шнуры, полосы и другие профилированные изделия - мето­дом шприцевания, заключающимся в непрерывном выдавли­вании нагретой резиновой смеси шнеком через фигурное отверстие насадки червячного пресса; массивные заготовки получают штамповкой, мелкие и средние - литьем под дав­лением; тонкостенные изделия изготавливают путем окуна­ния модели в латекс.

По назначению резины разделяются:

1. общего назначения, эксплуатируемые в интервале тем­ператур от - 50 до + 150 °С (шины, обувь, ремни, аморти­заторы и т.п.);

2. теплостойкие, используемые для длительной эксплуа­тации при температуре выше 150 °С (детали самолетов; машин, электродвигатели и т.п.);

3. морозостойкие, устойчивые при работе изделий в усло­виях Крайнего Севера и больших высот;

4. маслостойкие, устойчивые в бензине, керосине, нефти;

5. химически стойкие, устойчивые к озону, кислотам, ще­лочам, растворам солей;

6. газонаполненные, используемые как теплоизолирую­щий и амортизационный материалы;

7. стойкие к действию радиации - для изготовления де­талей рентгеновских аппаратов, атомных реакторов и т.д.;

8. диэлектрические, применяемые для изоляции.

Экономика производства синтетических каучуков и рези­ны в значительной степени определяется стоимостью исход­ного сырья. Так, стоимость сырья в промышленности синте­тических каучуков составляет около 75%, в промышленности резиновых изделий - 80%, в шинном производстве - 87% себестоимости продукции. Доля электроэнергии и топлива со­ставляет 11 —12%. Следовательно, уменьшение сырья и мате­риалов имеет решающее значение для повышения экономической эффективности производства синтетического каучу­ка и резины.

Технологические процессы переработки топлива. Топливом называются твердые, жидкие и газообразные горючие вещества, являющиеся источником тепловой энер­гии и сырьем для химической промышленности.

В результате химической переработки различных топлив получают огромное количество углеводородного сырья для производства пластических масс, химических волокон, синте­тических каучуков, лаков, красителей, растворителей и т.п.

Так, например, при коксовании углей получают: бензол, то­луол, ксилолы, фенол, нафталин, антрацит, водород, метан, этилен и другие продукты. При добыче нефти из нее выделя­ют "попутные" газы, которые содержат метан, этан, пропан, бутан и другие углеводороды,







Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.