Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Вспомогательные технические средства обучения





 

Вспомогательные ТСО столь же важны в учебном процессе, как и основные, которые при их отсутствии могут быть менее эффек­тивны. Думается, в данном пособии нет смысла подробно оста­навливаться на разнообразных системах зашторивания, устрой­ствах для более эффективного использования школьных досок и т. п. В давно работающих школах, если считали нужным приоб­рести такие устройства или сделать их своими силами, их приоб­рели и сделали. В современных школах в очень многих традици­онных вспомогательных средствах нет необходимости, так как мультимедийные ТСО применяются в других условиях. Кроме того, появилось много современных вспомогательных ТСО, которые также многие сложные устройства прошлого делают ненужными.

Механизированная аудиторная доска «РР182» предназначена для оснащения лекционных аудиторий в учебных заведениях. Она вы­полнена из матированного оргстекла и имеет цветной фон. Ее подъем и опускание на необходимую высоту осуществляются электродви­гателем с редуктором с двух пультов управления, смонтированных на горизонтальной панели, установленной перед доской. Доска ос­нащена специальными зажимами для подвески плакатов и устрой­ствами для стирания записей.

Размер рабочей по­верхности 4500 х 2000 мм. Максимальная высота подъема -1000 мм. Масса - 480 кг.

Информационное поле «ММА 311.01» предназначено для рабо­ты в составе комплексов технических средств обучения. Оно позво­ляет производить запись мелом на доске, демонстрировать на раз­ворачивающемся отражательном экране учебные фильмы, диафиль­мы, диапозитивы, демонстрировать на просветном полиэкране диапозитивы, поднимать с помощью механизированной рейки зак­репленные на ней планшеты, схемы, карты и т.п., управлять рабо­той четырех диапроекторов, управлять работой разворачивающе­гося экрана, механизированной рейки и подсветной меловой дос­ки, использовать микрофон выносного пульта для усиления речи

преподавателя.

Использование всякой проекционной аппаратуры связано с на­личием и качеством экранов. Экран - плоская или криволинейная поверхность для рассеивания в направлении зрителя света от каж­дого участка спроецированного на него изображения. Экраны бы­вают светоотражающие (изображение рассматривается с той же стороны, с которой проецируется) и просветные (проецирование ведется на просвет - обратная проекция). От экрана и его свойств во многом зависит качество изображения. Традиционные экраны и их вариации по размерам, материалам, из которых они выпол­нены и т. д., достаточно хорошо известны и в том или ином наборе имеются в любой школе.

Рассмотрим современные модели и их характеристики. Разли­чают два типа экранов: тип D и тип S. Первый - рассеивающий, обеспечивает равномерное распределение светового потока на эк­ране и имеет идеальную матово-белую поверхность. Второй тип - собирающий имеет металлизированное серебристое покрытие, которое отражает световые лучи, подобно зеркалу, и подходит для стереоскопических трехмерных проекций. Бывают экраны с вогнутой поверхностью, которая обеспечивает более высокую плотность светового потока за счет концентрации света. Имеются экраны сферической, цилиндрической и параболической формы. Параболические экраны - это сверхъяркие экраны с высоким коэффициентом усиления благодаря сильной концентрации света. Существует много вариаций стационарных и переносных экранов разных размеров и конструкций. Среди них можно назвать экраны на штативах с продуманными системами крепления и регулировки; складывающиеся экраны, устанавливающиеся в считанные минуты без дополнительных инструментов.

Интересны появившиеся свыше 10 лет назад ЖК-панели. С помощью мощного оверхед-проектора можно получить прекрасное качество изображения наглядной информации с экрана компьютера, подключенной видеокамеры или видеомагнитофона. Многие модели имеют функции «увеличение», «указка», «занавес», которые позволяют разнообразить демонстрацию. Панель снабжается небольшими громкоговорителями. ЖК-панели хороши для использования в стационарных условиях компьютерных классов или конференц-зала.

Современным вариантом проекционной плоскости являются плазменные панели. Плазма-технологии - технологии будущего. Плазменные панели становятся все более и более популярны, так как они ярче и больше, чем ЖК-дисплеи, тоньше, легче и компактней CRT-дисплеев.

Плазменные панели обеспечивают чрезвычайно высокое качество изображения с высокой яркостью и контрастностью. Источником излучения служат люминофоры (красный, синий и зеленый), свечение которых в свою очередь вызывает ультрафиолетовое излучение разряда в газе. Такая панель очень удобна в обращении, имеет широкий угол обзора, поддер­живает все популярные видеоформаты, может быть прикреплена к стене или потолку или размещена на подставке.

Спектр применения плазменных панелей очень широк - это деловые презентации, учебные и информационно-справочные табло, домашнее видео. Панели занимают мало мес­та, могут быть расположены в любом помещении.

В панели предусмотрено четыре режима работы: нормальный (изображение 4:3 - в центре, края дисплея не используются), широкий (изображение 4:3 равномерно растягивается к краям), растянутый (изображение 4:3 растягивается неравномерно - от центра к краям), автоматический (режим определяется в зависимости от вида сигнала). Ви­деостандарты: PAL, SECAM, NTSC. Есть встроенная аудиосистема. Мас­са - 40 кг (рис. 17).

К вспомогательным ТСО можно отнести и современные электронные доски (рис. 18, 19). Это доска с ин­терактивными возможностями и возможностью передачи данных на расстояние. Все, что пишется на этой доске, автоматически появляется в приложении Windows или на компьютере Macintosh. Рисунки и данные, записанные на доске, можно сохранить и использовать в различных приложениях, распечатать и раздать слушателям, переслать заочным участникам семинара по факсу или электронной почте. В основе такой доски лежит технология лазерного сканирования, позволяющая

отслеживать цвет, положение и движение маркера и передавать их на мо­нитор компьютера без задержки.

Электронные доски характеризуются:

- высококачественной фарфоровой поверхностью на металлической основе;

- возможностью сохранять и репродуцировать данные;

- полноцветным изображением и принтерным интерфейсом;

- цветными копиями, полученными посредством компьютерного принтера;

- интерактивностью и другими приложениями;

- возможностью фронтальной проекции;

- легкостью использования.

 


Мониторы

 

Дисплей - устройство визуализации (отображения) текстовой и графической информации без ее долговременной фиксации.

Отсутствие долговременной фиксации информации означает ее исчезновение при выключении питания или при выводе новой информации.

Дисплей является основным ПУ ПЭВМ и служит как для отображения информации, вводимой посредством клавиатуры или других устройств ввода, так и для выдачи пользователю сообщений, а также для вывода полученных в ходе выполнения программ результатов.

В ПЭВМ же применяются специальные устройства. Независимо от физических принципов формирования изображения дисплей состоит из двух основных частей - экрана и электронного блока, размещенных в одном корпусе. Подключается дисплей к ПЭВМ через дисплейный адаптер (видеоадаптер, или видеоконтроллер).

Часто вместо термина "дисплей" употребляют термины "монитор" ("видеомонитор"). Монитором называют устройство, применяемое для контроля какого-либо процесса и управления системой. Конструктивно - это либо совокупность дисплея и клавиатуры, либо просто дисплей. Так как в ПЭВМ функции управления и контроля, а также ввода-вывода данных совмещены в одних и тех же устройствах, то монитор и дисплей можно считать синонимами, хотя в общем случае эти термины не эквивалентны.

По функциональному назначению (функциональным возможностям) дисплеи подразделяются на алфавитно-цифровые и графические. Первые способны воспроизводить только ограниченный набор символов. Вторые же являются гораздо более гибкими. Они в состоянии отображать как графическую, так и, что вполне естественно, текстовую информацию. В настоящее время графические дисплеи в ПЭВМ практически вытеснили алфавитно-цифровые.

По количеству воспроизводимых цветов различают монохромные (одноцветные) и цветные дисплеи. Монохромные устройства способны воспроизводить информацию только в каком-либо одном цвете, возможно, с различными градациями яркости. Широко распространены черно-белые экраны, а также зеленые и желтые. Цветные дисплеи обеспечивают выдачу на экран информации одновременно в нескольких цветах.

По физическим принципам формирования изображения существуют:

1. дисплеи на базе электронно-лучевой трубки;

2. жидкокристаллические дисплеи;

3. плазменные (газоразрядные) дисплеи;

4. электролюминесцентные дисплеи.

Дисплеи на базе электронно-лучевой трубки традиционны, а принцип их работы аналогичен бытовому телевизору. В электронно-лучевой трубке формируется луч (или три луча для цветных трубок), управляя перемещением и интенсивностью которого можно получить изображение на люминофором экране. Для дисплеев данного типа графические изображения могут формироваться двумя способами. В векторном дисплее электронный луч непрерывно "вырисовывает" контур изображения. Само изображение формируется из отдельных элементарных отрезков (векторов). В растровых же дисплеях изображение получается с помощью матрицы точек, которые могут "светиться", а могут быть невидимыми: электронный луч пробегает по строкам экрана, подсвечивая требуемые зерна (точки) люминофора. В этом случае и небольшом разрешении при воспроизведении ряда фигур хорошо заметен эффект "мозаичности". Цветные экраны имеют зерна трех цветов: красного, зеленого и желтого, собранные в триады. Каждый из трех электронных лучей отвечает за свой цвет, подсвечивая при необходимости "свои" зерна. Манипулируя яркостью зерен, можно сформировать точку любого цвета. Первоначально дисплеи на базе электроннолучевой трубки в отличие от бытовых телевизоров имели цифровой видеовход.

Сейчас же в наиболее совершенных моделях дисплеев осуществлен возврат к аналоговым видеовходам (имеется в виду стандарт VGA). Дисплеи на базе электронно-лучевой трубки громоздки, потребляют много энергии, но имеют хорошие технические характеристики.

Жидкокристаллический экран (индикатор) представляет собой совокупность сегментов для воспроизведения элементарных частей изображения (в частности, точек). Каждый сегмент состоит из нормально прозрачной анизотропной жидкости, заключенной между двумя прозрачными электродами. При подаче на электроды напряжения коэффициент отражения жидкости меняется, и сегмент при освещении его внешним источником света темнеет. Индикаторы данного типа в отличие от других являются не активными, а пассивными (изображение "проявляется" только при внешнем освещении). По сравнению с другими жидкокристаллические индикаторы характеризуются малыми потребляемой мощностью и массой. Основная проблема для них - невысокая контрастность изображения. К настоящему времени предложены не только монохромные, но и цветные жидкокристаллические дисплеи. Индикаторы данного типа часто применяют в электронных часах и калькуляторах.

В ПЭВМ в последнее время широкое распространение получили жидкокристаллические индикаторы с обратной (задней) подсветкой (backlit). Их конструктивная особенность заключается в том, что за экраном размещается источник света, а сам экран состоит из жидкокристаллических ячеек, которые в нормальном состоянии являются непрозрачными. При приложении к, такой ячейке напряжения она начинает пропускать свет, что и приводит к получению изображения на экране. Такой принцип формирования изображения облегчает создание цветных дисплеев. Действительно, достаточно на экране иметь тройки жидкокристаллических ячеек, обеспечивающие на просвет воспроизведение основных цветов (красного, зеленого и синего).

В 1990 г. японская фирма Dainippon inc. & Chemicals завершила разработку полимерной сети, которой можно обвить жидкий кристалл как паутиной. Такой экран не требует поляризаторов и подсветки, а также потребляет меньше энергии.

Экран плазменного дисплея представляет собой матрицу газоразрядных элементов. При приложении к электродам газоразрядного элемента напряжения возникает электрический разряд красного или оранжевого свечения в газе, которым этот элемент заполнен. По сравнению с жидкокристаллическими плазменные индикаторы имеют более высокую контрастность, однако обладают и повышенным энергопотреблением.

Экран люминесцентного дисплея состоит из матрицы активных индикаторов, дающих яркие изображения с высокой разрешающей способностью. Они имеют высокую механическую прочность и надежность, однако отличаются большим энергопотреблением и высокой стоимостью. Наряду с монохромными имеются и цветные люминесцентные дисплеи.

В стационарных ПЭВМ в настоящее время применяются дисплеи на базе электронно-лучевой трубки. Переносные ПЭВМ снабжаются такими же устройствами или плазменными дисплеями. В наколенных и более компактных ПЭВМ используются главным образом жидкокристаллические и изредка плазменные индикаторы. Электролюминесцентные дисплеи перспективны для использования в различных классах малогабаритных ПЭВМ.

В зависимости от степени универсальности дисплеи подразделяются на однорежимные и многорежимные.

Однорежимный дисплеи способен работать только совместно с видеоадаптером одного типа.

Многорежимные дисплеи совместимы с видеоадаптерами различных типов

Основными техническими характеристиками дисплеев являются:

1. разрешающая способность;

2. количество воспроизводимых цветов или градаций яркости;

3. размер экрана (как правило, по диагонали);

4. масса и габариты;

5. стоимость.

Разрешение дисплея измеряется в различных единицах. Для алфавитно-цифровых устройств указывается число воспроизводимых символов в строке и строк на экране. Для графических дисплеев указывается количество высвечиваемых точек по горизонтали и по вертикали. В дальнейшем разрешение будет указываться в виде m ґ n, где m относится к горизонтали, а n - к вертикали. Это же справедливо и для матрицы точек при представлении символа на графическом дисплее. Альтернативной единицей измерения разрешающей способности является количество воспроизводимых точек (по вертикали или горизонтали) на единицу длины.

Есть еще один немаловажный показатель качества дисплеев на базе электронно-лучевой трубки, а именно, частота сканирования (частота вертикальной и частота горизонтальной развертки). Чем выше разрешение дисплея, тем выше должна быть и частота (скорость) сканирования для обеспечения приемлемого качества изображения (без мерцания). Поэтому от частоты сканирования во многом зависит степень универсальности монитора.

Возможность многорежимной работы дисплея на базе электронно-лучевой трубки определяется его способностью воспринимать синхроимпульсы для горизонтальной и вертикальной развертки с различной частотой. В соответствии с этим различают:

· дисплеи с фиксированной частотой;

· мультичастотные дисплеи, способные работать на нескольких фиксированных частотах для горизонтальной и вертикальной развертки;

· мулыписканирующие дисплеи, обеспечивающие работу в диапазонах частот для горизонтальной и вертикальной развертки.

Дисплеи с фиксированной частотой могут быть только однорежимными; другие же поддерживают несколько режимов работы.

При формировании изображения на основе других физических принципов многорежимность определяется возможностями управления индикаторами.

Разрешающая способность высококачественных графических дисплеев на базе электронно-лучевой трубки достигла величины, позволяющей получить изображение фотографического качества.

Количество воспроизводимых цветов или градаций яркости зависит от возможностей по управлению интенсивностью электронных лучен, прозрачностью жидкокристаллических индикаторов или яркостью других (активных) индикаторов.

Для цветных мониторов удобно пользоваться двумя понятиями - базовая и рабочая палитры. Базовая палитра представляет собой совокупность цветов, которые могут отображаться на экране. Но цвета базовой палитры в общем случае нельзя отобразить на дисплее одновременно. Обычно из базовой палитры формируется рабочая палитра, цвета которой могут сочетаться на дисплее одновременно и в любой комбинации. Как правило, рабочая палитра существенно уже в базовой. Менять рабочую палитру можно программными средствами.

Интересны изделия и другого типа, основной особенностью которых являются малые массо-габаритные показатели. Так, например, американская фирма reflection Tehnology выпустила устройство размером 31х28х81 мм с разрешением 720х280 (стандартно) или 1024х280 точек. Его масса составляет всего лишь 60 г. Такой дисплей можно прикрепить к головным телефонам (наушникам). Он располагается на расстоянии 2 - 3 см от глаз, а у наблюдателя создается впечатление, что изображение находится на расстоянии около метра.

Возможности ПЭВМ по отображению информации определяются совокупностью и совместимостью технических характеристик дисплея и его адаптера (т.е. видеосистемы в целом). В настоящее время различными производителями предлагается широкий спектр видеоадаптеров. Любой адаптер содержит видеопамять, хранящую воспроизводимую на экране информацию. Ее объем может достигать нескольких Мбайт. Каждой точке экрана или знакоместу соответствует поле видеопамяти (несколько бит или байт), в котором хранится элемент отображения, или изображения (pixel - сокращение от англ. picture element). Элемент отображения определяет режим высвечивания и цвет точки либо символа. Видеопамять логически содержится в одном адресном пространстве с ОП. Допускается записывать данные в видеопамять и считывать информацию из нее программными средствами. То, что находится в видеопамяти, немедленно отображается на экране.

Видеоадаптеры делятся на две большие группы - алфавитно-цифровые и графические. Они управляют соответствующими типами дисплеев.

Графический адаптер обычно может работать в нескольких текстовых и нескольких графических режимах, которые различаются разрешением, а также цветовыми (яркостными) возможностями.

В текстовых режимах имеющаяся видеопамять полностью не используется, поэтому можно организовать в ней несколько страниц, что позволяет ускорить смену изображений на экране путем предварительного заполнения страниц требуемой информацией и последующего переключения воспроизведения со страницы на страницу. Страничная организация видеопамяти допустима также в графических режимах с пониженным разрешением при избыточности объема видеопамяти. Основные технические характеристики базовых моделей видеоадаптеров, ставших стандартными, представлены в таблице

 


Принтеры

 

Печатающие устройства, или принтеры (от англ. printer), предназначены для вывода алфавитно-цифровой (текстовой) и графической информации на бумагу или подобный ей носитель.

Следовательно, принтер в отличие от дисплея позволяет получить твердую копию изображения практически с неограниченным временем хранения.

Классификация выпускаемых для ПЭВМ принтеров по технологии печати.

Принтеры ударного типа характеризуются тем, что изображение на бумагу наносится механическим способом. Из них в ПЭВМ применяются устройства с литерной печатью (литерные принтеры) и точечно-матричные принтеры.

В безударных принтерах передвижение бумаги и печатающей головки по-прежнему осуществ-ляется механическим способом, но для формирования изображения на бумаге используются немеханические принципы.

Наибольшее распространение в ПЭВМ получили следующие виды безударной технологии печати: струйная, термографическая и электрофотографическая (лазерная).

По причине высоких технических характеристик считаются перспективными электростатическая и магнитографическая технологии. Электрочувствительные принтеры используются редко.

Основные преимущества безударной технологии - высокая скорость печати и низкий уровень шума.

Качество черно-белой печати принтеров уже достигло фотографического уровня. Для цветной печати этот уровень будет достигнут в ближайшие годы.

Принтеры подразделяются на устройства последовательного действия (печатают посимвольно), построчно печатающие устройства (выводят строки целиком) и постранично печатающие устройства (сразу формируют страницу). В ПЭВМ наибольшее распространение получили устройства первого класса благодаря их простоте, компактности и дешевизне. Но, конечно, они обладают меньшей производительностью.

Конструктивно принтеры для ПЭВМ выполняются достаточно малогабаритными, что позволяет размещать их на столе, рядом с ПЭВМ. Выпускаются еще более компактные устройства для портативных ПЭВМ.

Основными техническими характеристиками принтеров являются:

1. принцип действия (в соответствии с только что рассмотренной классификацией);

2. цветовые возможности (черно-белые или цветные принтеры);

3. графические возможности или их отсутствие;

4. разрешающая способность;

5. качество печати, тесно связанное с предыдущим показателем и обобщающее его;

6. скорость печати (быстродействие);

7. стоимость.

Вместо быстродействия принтера лучше говорить о производительности печати, учитывающей не только собственно скорость печати, но и время выполнения других операций, в частности, время заправки бумаги. Некоторые модели принтеров осуществляют последнюю операцию автоматически.


Литерные принтеры

Первой реализованной в коммерческих принтерах технологией печати была именно техника литерной печати. В больших ЭВМ используются высокоскоростные литерные печатающие устройства параллельного действия. В ПЭВМ же нашли применение главным образом только устройства последовательного действия.

Последовательная литерная технология печати заимствована, по сути дела, у пишущих машинок. Она состоит в печати сформированными символами - литерами. При этом способе печати производится удар по бумаге литерой через красящую ленту, в результате чего на бумаге остается контур символа. Печатающие элементы (шрифтоносители), на которых размещены литеры всех печатных знаков, могут выполняться цилиндрическими (в виде барабана), шарообразными, лепестковыми (типа "ромашка"), ленточными или наперсткообразными (напоминающими волан для игры в бадминтон). Зачастую эти элементы делают съемными, что позволяет изменять виды шрифтов, наборы символов и языки. Однако такую смену нельзя осуществить оперативно (в ходе печати).

Литерные принтеры обладают высокой надежностью, обеспечивают типографское качество печати и допускают смену шрифтов, хотя последнее не является удобным и простым. Однако они имеют низкую скорость печати (10 - 60 символ/с), высокий уровень шума и сравнительно высокую стоимость (порядка 2000 долл., а иногда и выше), а также характеризуются отсутствием графических возможностей. Цветовые возможности также ограниченны, однако в принципе реализуемы путем использования многоцветной ленты и ее смещения относительно шрифтоносителя.

Устройства литерного типа сейчас находят в ПЭВМ весьма ограниченное применение.

Точечно-матричные принтеры

Основным узлом точечно-матричною принтера является печатающая головка, которая перемещается по специальным направляющим вдоль печатаемой на бумаге строки, "вырисовывая" выводимую информацию по точкам через красящую ленту. После печати строки бумага продвигается и описанный процесс повторяется.

Печатающая головка содержит несколько игл (штифтов), расположенных вертикально. Каждая игла управляется собственным электромагнитом. При необходимости отпечатать точку в ходе движения головки соответствующий электромагнит срабатывает, игла ударяет по красящей ленте и точка наносится на бумагу. Следовательно, принцип формирования изображений в точечно-матричных принтерах логически эквивалентен способу вывода информации на экран дисплея.

В точечно-матричных принтерах применяются устройства подачи красящей ленты кассетного и бобинного типа. Устройство кассетного типа характеризуется простотой процедуры заправки кассеты с лентой в принтер. Пользователь даже не касается красящей ленты руками при ее смене, так как извлекает и вставляет целую кассету. В устройствах бобинного типа замена ленты сопряжена с определенными трудностями и выполняется вручную.

Точечно-матричные принтеры имеют буферное ОЗУ той или иной емкости для того, чтобы разгрузить МП в ходе печати.

Аналогично графическим дисплеям принтеры данного типа могут работать в двух режимах - текстовом и графическом. Текстовый режим характеризуется существенно большей скоростью печати, так как при этом выводится сразу строка символов, а не строка точек. В случае текстового режима в принтер пересылаются коды символов, которые следует распечатать, причем матрицы точек, которые нужно нарисовать, выбираются из знакогенератора принтера. При графическом режиме в печатающее устройство пересылаются коды, определяющие последовательность и местоположение точек изображения.

Качество печати точечно-матричного принтера определяется его разрешающей способностью, а также возможностями вывода точек с частичным перекрытием (в том числе за несколько проходов печатающей головки). Для текстового режима в общем случае различают следующие подрежимы, характеризующиеся различным качеством печати:

1. режим черновой печати (Draft);

2. режим печати, близкий к типографскому (NLQ - Near Letter Quality), или режим делового письма (Correspondence Quality);

3. режим с типографским качеством печати (LQ - Letter Quality);

4. сверхкачественный режим (SLQ - Super Letter Quality).

В принтерах с различным числом игл эти режимы реализуются по-разному.

Так, 9-игольчатые устройства обеспечивают печать в режиме Draft за один проход печатающей головки по строке. Режим NLQ реализуется за два прохода: после первого прохода головки бумага протягивается на расстояние, соответствующее половинному размеру точки; затем совершается второй проход (с частичным перекрытием точек). При этом скорость печати уменьшается в два раза. В некоторых принтерах режим двойного прохода совмещается с режимом горизонтального смещения, что еще больше повышает качество печати. Иногда применяется и трехпроходная техника.

18-игольчатые печатающие головки содержат два столбца по 9 игл с вертикальным сдвигом относительно друг друга на половину размера точки. Поэтому режимы печати повышенного качества реализуются за один проход, а скорость черновой печати может быть увеличена в 2 раза за счет одновременной печати двух столбцов точек, вследствие чего можно повысить скорость перемещения пишущей головки.

24-игольчатые принтеры обеспечивают наилучшее качество печати с наивысшей для данного типа устройств скоростью и имеют два ряда по 12 игл с относительным смещением.

Во многих моделях принтеров увеличение скорости печати достигается путем реализации вывода как при прямом, так и при обратном ходе печатающей головки.

Точечно-матричные принтеры, как правило, поддерживают несколько шрифтов и их разновидностей, среди которых получили широкое распространение Roman (мелкий шрифт пишущей машинки), italic (курсив), bold-face (полужирный), expanded (растянутый), elite (полу сжатый), condenced (сжатый), pica (прямой шрифт - цицеро). Courier (курьер). Sans Serif (рубленый шрифт сансериф). Serif (сериф). Prestige Elite (престиж-элита) и пропорциональный шрифт (ширина поля, отводимого под символ, зависит от ширины символа).

Переключение режимов работы точечно-матричных принтеров и смена шрифтов может осуществляться как программно, так и аппаратно путем нажатия имеющихся на устройствах клавиш или соответствующей установки переключателей.

Принтеры рассматриваемого типа надежны, экономичны, просты в обслуживании, недороги и обладают достаточным быстродействием, приемлемым качеством печати, сравнительно невысоким уровнем шума, а также графическими возможностями. Цветная печать реализуется достаточно просто. Каждая строка цветного изображения формируется за четыре прохода печатающей головки с помощью поднятия или опускания кассеты с цветной лентой при каждом проходе, в результате чего иголки ударяют по полосе другого цвета на ленте.

Имеются также построчно-печатающие точечно-матричные принтеры, в которых иглы расположены равномерно вдоль всей строки печати, что существенно повышает быстродействие.

Струйные принтеры

Струйная технология впервые была разработана в начале 60-х гг. годов учеными Стенфордского университета (США). Широко внедряться в печатающие устройства она стала только с конца 70-х гг. Первопроходцами в доведении научных разработок до коммерческого использования были фирмы IBM и Siemens AG. В настоящее время производится множество таких устройств, различающихся как принципом печати, так и техническими характеристиками.

Струйная технология печати, абстрагируясь от деталей, состоит в том, что изображение наносится на бумагу путем "выстреливания" (под давлением) красителя из крохотного сопла. Одно или несколько сопел устанавливаются на печатающей головке, которая аналогично точечно-матричным принтерам в процессе работы устройства перемещается относительно бумаги.

Различают два основных типа струйных принтеров:

· с непрерывной подачей красителя;

· с капельным микродозатором.

В устройствах первого типа формируется непрерывный поток из маленьких капель, которые заряжаются и, пролетая через электрическое поле, отклоняются в вертикальной плоскости пропорционально их заряду. Вспомним, что горизонтальное отклонение обеспечивается перемещением печатающей головки. Капли, которые не должны делать точку на бумаге, отклоняются в специальный желоб, по которому краска возвращается в резервуар для последующего использования. Отклонение капель может быть бинарным, при котором капля попадает либо в определенную точку по вертикали на бумаге, либо в желоб возврата. Такой принцип используется для печатающих головок с несколькими вертикально расположенными соплами. Имеются и устройства с мультиотклонением, используемым при недостаточном количестве сопел, в частности, когда печатающая головка имеет единственное сопло.

Принтеры второго типа (с капельным микро-дозатором) содержат матрицу или столбец вертикально расположенных сопел, и принцип формирования изображений в них аналогичен точечно-матричным печатающим устройствам. При горизонтальном движении печатающей головки из сопел в нужные моменты времени "выстреливаются" капли, которые попадают на бумагу. В этом случае отпадает необходимость отклонять поток капель.

Принтеры с непрерывной подачей красителя, по сравнению с устройствами с капельным микро-дозатором, имеют большее быстродействие, но и являются более сложными.

Струйным принтерам присущи низкие уровень шума и энергопотребление, графические возможности, вполне доступная стоимость и достаточно высокое качество печати. Малая потребляемая мощность обеспечивает возможность их использования в портативных ПЭВМ с батарейным питанием.

Струйная технология печати порождает и ряд проблем, среди которых основной является проблема предотвращения засыхания чернил в соплах и одновременно с этим обеспечения быстрого их высыхания при попадании на бумагу. Она решается либо путем погружения сопел в резервуар с красителем, либо автоматизацией очистки сопел, либо благодаря использованию красителя, расплавляющегося при нагревании и затвердевающего при остывании. Последний способ решения проблемы представляется наиболее перспективным. Для его реализации достаточно подогреть сопла и, возможно, резервуар с красителем.

Струйная технология является одним из основных видов получения высококачественной цветной печати. Для цветной печати, как правило, используются красители уже названных четырех цветов. По парное их смешение до нанесения капель на бумагу дает еще три цвета. Чтобы выйти за семицветное ограничение, струйные принтеры используют прием, известный как подмешивание: печать смежных (возможно, с наложением) точек разными цветами, которые глаз воспринимает как одноцветный блок. Однако из-за того, что подмешивание заменяет одну точку определенного цвета несколькими точками разных цветов, изображения, напечатанные методом подмешивания, получаются несколько размытыми.

Термографические принтеры

Между принципом действия термографических и точечно-матричных принтеров можно провести вполне определенную параллель. Отличия состоят лишь в том, что для нанесения точек в первых принтерах используется свойство некоторых материалов изменять свой цвет при нагревании (или расплавляться), а вместо обычных металлических игл применяются тонкие нагреваемые электроды. Таким образом, в термографических принтерах для формирования изображения на бумаге используется не удар, а нагрев. Иногда эти устройства называют химическими принтерами, так как в них используется одноименная реакция, вызванная нагреванием.

Термографические печатающие устройства подразделяются на два типа:

1. принтеры с прямым нагревом;

2. принтеры с переносом.

В устройствах первого типа используется бумага со специальным химическим покрытием. Нагретый электрод непосредственно касается такой бумаги, и в результате химической реакции точка "проявляется", приобретая синий или черный цвет.

В принтерах второго типа используется специальная красящая лента, краситель которой, расплавляясь от касания нагретым электродом, переносится на бумагу отпечатывая точку.

Достоинство принтеров с передачей состоит в том, что им не требуется специальной бумаги, однако сама красящая лента довольно дорога.

Термографические принтеры почти бесшумны, просты по конструкции, недороги и, хотя обладают малым для большинства моделей быстродействием (40 - 80 символ/с), дают довольно высокое качество печати, естественно, предоставляя и графические возможности. Простота конструкции привела к тому, что устройства этого типа часто используются в портативных ПЭВМ.

Существуют и высокоскоростные термографи-ческие принтеры (450 символ/с), а также построчно и постранично печатающие устройства.

Технология цветной термографической печати достаточно проработана, однако независимо от типа устройства (с прямым нагревом или с переносом) она требует нескольких проходов (по одному на каждый основной цвет).







Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.