Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Средняя квадратическая величина.





В ранжированном ряду средняя квадратическая величина рассчитывается по невзвешенной (простой) форме: где х – варианты ранжированного ряда; n – общее число вариант.

Взвешанная форма средней квадратической величины, которая используется для дискретного или интервального ряда, выражается следующим образом:

Средняя квадратическая величина, как самостоятельный вид средних, имеет ограниченноеприменение.

Допустим, имеющееся две нестандартные цилиндрические емкости для хранения нефтепродуктов с диаметрами оснований 2 и 5 м необходимо заменить двумя новыми, равными по объему емкостями, имеющими в основании одинаковый диаметр. При расчёте среднего диаметра оснований новых емкостей по способу средней арифметической простой величины, т.е. полученный результат оказывается заниженным, и по этому диаметру объёмы новых емкостей будут меньше объемов имеющихся емкостей, что не соответствует условию задания. Дело в том, что площади оснований цилиндрических емкостей соотносятся между собой не линейно, а как квадраты их радиусов. Поэтому расчёт среднего диаметра новых емкостей целесообразно вести по средней квадратической простой величине:

Таким образом, диаметр оснований новых емкостей должен быть не 3,5, а 3,8 м.

 

Если же исходные данные представленных в виде дискретного или интервального ряда, то целесообразно применить способ средней квадратической взвешенной величины. Например, необходимо рассчитать средний диаметр сосновых брёвен по данным, приведённым в табл



Т а б л и ц а . Число и размер брёвен в штабеле

Число брёвен Диаметр, см
в вершине в комле

 

Из данных табл. нетрудно убедится, что диаметр брёвен (варианта) представлен в виде интервального ряда, при этом число брёвен (частота) по каждой группе кратно 10. Это означает, что при расчёте среднего диаметра брёвен в штабеле выполняем по формуле ход расчёта вспомогательных данных при определении среднего диаметра покажем в табл..

Т а б л и ц а . Порядок расчета среднего диаметра брёвен в штабеле

Число брёвен Диаметр, см Середина интервала, см Квадраты диаметра Взвешенные квадраты диаметра
Факт., шт сокращенное в вершине в комле
f     x X2 X2
Σ 70 - - - -

Целесообразно обратить внимание на то, что с учётом применения второго свойства средних величин конечный расчёт среднего диаметра брёвен в штабеле принимает следующий вид:

Таким образом, средневзвешенный диаметр сосновых брёвен в штабеле, рассчитанный по способу средней квадратической величины, составляет 46,5 см.

Средняя геометрическая величина имеет простую (невзвешенную) и взвешенную формы.

Средняя геометрическая простая величина, рассчитываемая в ранжированном ряду, выражается следующим образом:

где П – знак произведения; х – варианты; n – общее число вариант в ранжированном ряду.

Для дискретного или интервального ряда средняя геометрическая рассчитывается по взвешенной форме:

где f – частота дискретного или интервального ряда.

Средняя геометрическая величина применяется в тех случаях, когда варианты связаны между собой знаком произведения, т.е. главным образом при расчёте относительных показателей динамики: коэффициентов (темпов) роста, прироста и др.

Например, необходимо рассчитать, во сколько раз в среднем возросло производство сахарной свеклы в сельскохозяйственном предприятии за четырёхлетие, если известно, что цепные коэффициенты роста по годам составили соответственно 1; 0,9; 1,3; 1,5; раза. При решении этой задачи рассуждаем так: цепные коэффициенты роста не автономны, как в вариационном ряду распределения, а взаимозависимы, т.е. связаны между собой знаком произведения. Следовательно, наиболее точный результат может быть получен при условии применения средней геометрической невзвешенной величины по формуле:

Таким образом, производство сахарной свеклы за приведенное четырехлетие за каждый год в среднем возрастало в 1,151 раза.

 

Если имеет место дискретный или интервальный ряд, то при расчёте средней целесообразно воспользоваться взвешенной формой средней геометрической величины.

Допустим, необходимо рассчитать среднегодовой темп роста валового производства картофеля в районе за 20 -–летний период по данным, приведём в табл..

 

Т а б л и ц а. Динамика валового производства картофеля в районе

Темпы роста производства картофеля, % Число лет в каждом периоде
Интервалы Средина интервала
  х f
90-100
100-110
110-120
120-130
Σ -

Как видно из данных табл., темпы роста производства картофеля представлены в виде интервального ряда, а темпы роста, как известно, связаны между собой знаком не суммы, а произведения. Это означает что для расчёта среднего роста за весь 20 – летний период целесообразно применить взвешенную форму средней геометрической величины:

Таким образом, за двадцатилетний период производство картофеля развилось со среднегодовым темпом роста 100,2 %.

Средняя гармоническая величина.Название средней гармонической величины неслучайно, так эта средняя "гармонирует" со средней арифметической величиной.

Для ранжированного ряда используется средняя гармоническая простая величина, которую можно записать следующим образом.

где n – общая численность вариант; - обратное значение варианты.

Допустим, имеются данные о том, что при перевозке картофеля скорость движения автомобиля с грузом составляет 30 км/ч, без груза – 60 км/ч. необходимо найти среднюю скорость движения автомобиля. На первый взгляд представляется совсем несложное решение задачи: применить способ средней арифметической простой величины, т.е.

Однако, если иметь в виду, что скорость движения равна пройденному пути, разделённому на затраченное время, то совершенно очевидно, что полученный результат (45 км/ч) оказывается неточным, так как на прохождение одного и того же автомобиля с грузом и без груза (туда и обратно) затраты времени будут существенно различаться. Следовательно, более точная средняя скорость движения автомобиля с грузом и без груза может быть рассчитана по средней гармонической простой величине:

Таким образом, средняя скорость движения автомобиля с грузом и без груза составляет не 45, а 40 км/ч.

В дискретный или интервальных рядах используются средняя гармоническая взвешенная величина:

где W – произведение варианты на частоту (взвешенная варианта, xf).

 

Рассмотрим пример. Трудоемкость производства картофеля в первом подразделении сельскохозяйственного предприятия составляет 1 чел.-ч., во втором – 3 чел.-ч. В обоих подразделения на производство картофеля затрачено по 30 тыс. чел.-ч. необходимо рассчитать среднюю арифметическую трудоёмкость картофеля в сельскохозяйственном предприятии. Само собой разумеется, что беглый взгляд на исходную информацию подсказывает простое решение: среднюю трудоёмкость легко найти как полу сумму трудоёмкости картофеля в двух подразделениях, т. е. по способу средней арифметической простой величины:

Однако, при таком решении совершается две ошибки. Первая, принципиальная ошибка заключается в том, что при расчёте средней трудоемкости по способу средней арифметической простой величины не учитывается сущность самой трудоемкости, которая находится как отношение прямых затрат труда к объему продукции. Вторая ошибка состоит в том, что при решении не учтен приведенный по условию задачи конкретный объем затрат труда на производство картофеля (по 30 тыс. чел.-ч. в обоих подразделениях). Это позволяет рассчитать частоту (веса) для трудоемкости картофеля и, таким образом, найти среднюю арифметическую взвешенную трудоемкость, что будет успешно заменено путем применения средней гармонической взвешенной величины:

Таким образом, средняя трудоёмкость картофеля в сельхозпредприятии составляет не 2, как это было рассчитано выше, а 1,5 чел.-ч/ц.

Средняя гармоническая величина применяется главным образом в тех случаях, когда варианты ряда представлены обратными значениями, а частоты (веса) скрыты в общем объеме изучаемого признака.

 







Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2022 zdamsam.ru Размещенные материалы защищены законодательством РФ.