Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Основные признаки живых систем.





Основные признаки живых систем.

1. Единство химического состава. В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение различных элементов в живом и неживом неодинаково. Элементарный состав неживой природы наряду с кислородом представлен в основном кремнием, железом, загнием, алюминием и т.д. В живых организмах 98% химического состава приходится на четыре элемента - углерод, кислород, азот и водород.

2. Обмен веществ. Все живые организмы способны к обмену веществ с окружающей средой, поглощая из нее элементы, необходимые для питания, и выделяя продукты жизнедеятельности. При небиологическом круговороте веществ они просто переносятся с одного места на другое или изменяется их агрегатное состояние, тогда как у живых организмов обмен имеет качественно иной уровень, включая процессы синтеза и распада.

3. Самовоспроизведение (репродукция). Самовоспроизведение, репродукция, или размножение, - это свойство организмов воспроизводить себе подобных; этот процесс осуществляется практически на всех уровнях организации живой материи. Благодаря репродукции не только целые организмы, но и клетки, органеллы клеток (митохондрии, пластиды и др.) после деления сходны со своими предшественниками.

4. Наследственность заключается в способности организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Наследственность обусловлена стабильностью, основанной на постоянстве строения молекул ДНК.

5. Изменчивость -это способность организмов приобретать новые признаки и свойства, в основе которой лежат изменения биологических матриц. Изменчивость создает разнообразный материал для естественного отбора, то есть отбора наиболее приспособленных особей к конкретным условиям существования в природе, что, в свою очередь, приводит к появлению новых форм жизни, новых видов организмов.

6. Рост и развитие. Под развитием понимают необратимое направленное закономерное изменение состава или структуры объектов живой и неживой природы. Развитие живой формы существования материи представлено индивидуальным развитием, или онтогенезом, и историческим развитием, или филогенезом. В процессе развития возникает специфическая структурная организация индивида, а увеличение его биомассы обусловлено репродукцией макромолекул, элементарных структур клеток и самих клеток.

7. Раздражимость. Любой Всякое изменение окружающих организм условий среды представляет собой по отношению к нему раздражение, а его реакция на внешние раздражители служит показателем его чувствительности и проявлением раздражимости. Реакция многоклеточных животных на раздражение осуществляется через посредство нервной системы и называется рефлексом.

8. Дискретность. Само слово "дискретность" означает прерывистость, разделенность и характеризует свойство жизни проявляться в виде дискретных форм. Отдельный организм или иная биологическая система (вид, биоценоз и др.) состоит из отдельных изолированных, то есть обособленных или отграниченных в пространстве, но, тем не менее тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство.

9. Ритмичность. Под ритмичностью понимают периодические изменения интенсивности физиологических функций с различными периодами колебаний (от нескольких секунд до года и столетия). Хорошо известны суточные ритмы сна и бодрствования у человека; сезонные ритмы активности и спячки у некоторых млекопитающих (суслики, ежи, медведи) и многие другие. Ритмичность направлена на согласование функций организма с окружающей средой, то есть на приспособление к постоянно меняющимся условиям существования.

10. Относительная энергозависимость. Живые тела представляют "открытые" системы, устойчивые лишь при условии непрерывного доступа к ним энергии и материи в виде пищи из окружающей среды. Живые организмы в отличие от объектов неживой природы отграничены от окружающей среды оболочками (наружная клеточная мембрана у одноклеточных, покровная ткань у многоклеточных). Эти оболочки затрудняют обмен веществ между организмом и внешней средой, сводят к минимуму потери веществ и поддерживают пространственное единство системы.

11. Гомеостаз (саморегуляция) - совокупность приспособительных реакций организма, направленных на сохранение динамического состояния его внутренней среды (температуры тела, кровяного давления и др.). В его основе лежит принцип отрицательной обратной связи. Именно эта способность живых систем сохранять стационарное состояние в условиях непрерывно меняющейся среды и обусловливает их выживание.

Чем обусловлено разнообразие белковых молекул?

Белки — это высокомолекулярные азотосодержащие органические соединения, состоящие из остатков аминокислот, содержащих атомы углерода, водорода, азота, кислорода, обычно серы, а иногда йода, железа и фосфора. Существует большое разнообразие белков, которые составляют основу структуры организма и обеспечивают большое количество функций. Каждый белок характеризуется специфической аминокислотной последовательностью и индивидуальной пространственной структурой (конформацией). Несмотря на сложность строения и многообразие, все белки построены из сравнительно простых структурных элементов — аминокислот. Связь между аминогруппой одной аминокислоты и карбоксильной группой другой называется пептидной (амидной). Любые аминокислоты, в свою очередь, будучи соединены пептидными связями, образуют длинные полипептидные цепочки, которые и называются белками. Всего насчитывается 20 различных аминокислот, которые входят в состав человеческого организма. Изменение числа аминокислотных остатков и последовательности их расположения в молекуле белка обеспечивает возможность образования громадного количества белков, различающихся своими физико-химическими свойствами, структурной или функциональной ролью в организме. Цепь аминокислотных звеньев, соединенных ковалентно-пептидными связями в определенной последовательности, называется первичной структурой белка. Первичная структура белка принимает различную конфигурацию: спираль – вторичная структура белка, глобула – третичная структура и четвертичная структура – комплекс глобул.

 

Примембранный скелет.

Примембранный цитоскелет. Впервые открыт в эритроцитах - после разрушения мембраны, вызванного экстракцией липидов неионными детергентами, остается плотная ячеистая структура, сохраняющая форму эритроцита.

Функции примембранного цитоскелета: механическая функция; участие в ряде регуляторных процессов, в том числе в передаче сигналов.

В составе примембранного цитоскелета каждая актиновая нить прикрепляется к цепочке из нескольких молекул белка полосы 4.1. Таким образом, актиновые нити вместе с гетеродимерами спектрина и глобулярным белком полосы 4.1 образуют примембранный скелет, который через анкирин связан с интегральным белком полосы 3.

 

Сеть тонких белковых нитей все вместе образуют так называемый цитоскелет (цитоплазматический скелет). Различают три типа структур: микротрубочки, промежуточные фибриллы и микрофиламенты. Их функции связаны с внутриклеточным движением, со способностью клеток поддерживать свою форму, а также эндоцитоз и экзоцитоз.

Цитоскелет (внутриклеточный цитоплазматический скелет) — составная часть цитоплазмы, ее механический каркас. Цитоскелет представляет собой сложную трехмерную сеть микрофиламентов и микротрубочек.

Микротрубочки представляют собой полые цилиндры порядка 25 нм диаметром, стенки которых составлены из 13 протофиламентов, каждый из которых представляет линейный полимер из димера белка тубулина. Димер состоит из двух субъединиц — альфа- и бета- формы тубулина. Растут микротрубочки с одного конца путем добавления тубулиновых субъединиц. Рост может начаться лишь при наличии матрицы. Функции: принимают участие в различных внутриклеточных процессах; регулируют расхождение хроматид или хромосом (осуществляется это за счет скольжения миротрубочек), участвуют в перемещении различных клеточных органелл (пример:в перемещении пузырьков Гольджи к формирующейся клеточной пластинке).

Микрофиламенты порядка 7 нм в диаметре, микрофиламенты представляют собой две цепочки из мономеров актина, закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки. Функции:отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином — в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт.

Промежуточные филаменты напоминают канат, имеющий толщину около 8-10 нм, состоящий из фибриллярных мономеров. Они локализуются главным образом в околоядерной зоне и в пучках фибрилл, отходящих к периферии клеток и располагающихся под плазматической мембраной. Встречаются во всех типах клеток животных, но особенно обильны в тех, которые подвержены механическим воздействиям: клетки эпидермиса, нервные отростки, гладкие и исчерченные мышечные клетки. В клетках растений не установлены. В состав промежуточных филаментов входят 4 типа белков: Первый типкератины, кислые и нейтральные, встречающиеся в эпителиальных клетках; они образуют гетерополимеры из этих двух подтипов. Второй тип белков включает в себя три вида белков: виментин, характерный для клеток мезенхимного происхождения, входящий в состав цитоскелета клеток соединительной ткани, эндотелия, клеток крови. Десмин – характерен для мышечных клеток, как гладких, так и исчерченных. Глиальный фибриллярный белок. Периферин – входит в состав периферических и центральных нейронов. Третий типбелки нейрофиламентов встречается в аксонах нервных клеток. Четвертый типбелки ядерной ламины. Функции: Они служат истинно опорной системой в клетках подвергающихся значительным физическим нагрузкам.

 

Митохондрии

Митохондрии - внутриклеточные органоиды, оболочка которых состоит из двух мембран. Наружная мембрана - гладкая, внутренняя образует выросты, называемые кристами. Внутри митохондрии находится полужидкий матрикс, который сдержит РНК, ДНК, белки, липиды, углеводы, ферменты, АТФ и тр. вещества; в матриксе имеются также рибосомы. Количество зависит от вида клетки (например в клетке печени может быть 1000-2500 митохондрий). Митохондрии могут быть спиральными, округлыми, вытянутыми, чашевидными и т.д.; митохондрии могут менять форму. Функции митохондрий связаны с тем, что на внутренней мембране находятся дыхательные ферменты и ферменты синтеза АТФ. Благодаря этому м. обеспечивают клеточное дыхание и синтез АТФ. М. могут сами синтезировать белки, т.к. в них есть собственные ДНК, РНК и рибосом.

Виды экзо- и эндоцитоза.

ИнтерФаза

В клеточном цикле различают сравнительно короткую М-фазу (митоз) и более длительный период — интерфазу. М-Фаза состоит из профазы, прометафазы, метафазы, ана- фазы и телофазы. Интерфаза складывается из фаз G1, S и G2. В безопас- ной точке рестрикции клетка может выйти из клеточного цикла и всту- пить в фазу G0. Под действием митогенов клетки из фазы G0 могут вер- нуться в цикл. Checkpoint 1 (точка рестрикции) и Сheckpoint 2 — сверочные точки. Циклины А, B, E, D — регуляторные субъединицы цик- лин-зависимых протеинкиназ (Cdk).

В интерфазе последовательно различают периоды G1, S и G2

• Пресинтетическая G1 фаза (от англ. gap — щель, интервал) — период высокой метаболической активности и роста клетки между телофазой митоза и репликацией (удвоением) ДНК. В эту фазу клетка синтезирует РНК и белки, завершается формирование ядрышка Продолжительность фазы — от нескольких часов до нескольких дней. У быстро делящихся клеток (эмбриональных и опухолевых) эта фаз а сокращена

G0 фаза — период пролиферативного покоя. В конце фазы G1 существует точка рестрикции (Сheckpoint 1) — безопасная точка клеточного цикла, в которой клетка может остановиться и выйти из цикла в фазу G0. В фазе G0 клетки начинают дифференцироваться, достигая терминальной (окончательной) дифференцировки (например, нейроны), или остаются в состоянии покоя (стволовые клетки). Стимулом для прохождения через точку рестрикции или возвращения клетки из фазы G0 в клеточный цикл является действие митогенов (например, фак- торов роста) — молекул, взаимодействующих со специфическими рецепторами в мембране клетки-мишени и инициирующих её пролиферацию.

• Синтетическая S фаза— период синтеза и реп- ликации ДНК; в хромосоме формируется вторая хроматида. Мито- хондриальная ДНК синтезируется незначительно, основная ее часть реплицицируется в постсинтетическом периоде интерфазы. В S фазу в клетке продолжается синтез белка, разделяются центриоли. В боль- шинстве клеток S фаза длится 8–12 часов.

•Постсинтетическая G2 фаза. В этот период завершается удвоение суммарной клеточной массы, дочерние центриоли достигают размеров дефинитивных органелл. В эту же фазу продолжается синтез РНК и белка (например, синтез тубулина для микротрубочек митотического веретена), накапливается АТФ для энергетического обеспечения последующего митоза. Эта фаза длится 2–4 часа.

Клеточный цикл. Митоз.

Клеточный цикл-Это период жизни клетки от момента её образования путем деления материнской клетки до собственного деления или смерти.

Клеточный цикл состоит из двух периодов:интерфаза (состояние, когда клетка НЕ делится); деление (митоз или мейоз).

Митоз-Это деление соматических клеток (клеток тела). Биологическое значение митоза – размножение соматических клеток, получение клеток-копий (с тем же самым набором хромосом, с точно такой же наследственной информацией). Все соматические клетки организма получаются из одной исходной клетки (зиготы) путем митоза. Дробление оплодотворённого яйца и рост большинства тканей у животных также происходит путём митотических делений.

На основании морфологических особенностей митоз условно подразделяется на стадии: профазу, прометафазу, метафазу, анафазу, телофазу.

1)Профаза:хроматин спирализуется (скручивается, конденсируется) до состояния хромосом;ядрышки исчезают; ядерная оболочка распадается; центриоли расходятся к полюсам клетки, в цитоплазме начинается формирование веретена деления.

2)Прометафаза – Начинается с быстрого распада ядерной оболочки на мелкие фрагменты. В хромосомах с каждой стороны центромеры образуются особые структуры, называемые кинетохорами. Они прикрепляются к специальной группе микротрубочек, называемых кинетохорными нитями или кинетохорными микротрубочками.

3)Метафаза – заканчивается формирование веретена деления: хромосомы выстраиваются по экватору клетки, образуется метафазная пластинка

4)Анфаза – дочерние хромосомы отделяются друг от друга (хроматиды становятся хромосомами) и расходятся к полюсам

5)Телофаза:хромосомы деспирализуются (раскручиваются) до состояния хроматина; появляются ядро и ядрышки; нити веретена деления разрушаются; происходит цитокинез – разделение цитоплазмы материнской клетки на две дочерних

Дифференцировка клетки.

Дифференцировка клеток является важнейшей составной частью процесса формирования многоклеточного организма. В общем случае дифференцировка необратима, т.е. высокодифференцированные клетки не могут превращаться в клетки другого типа. Это явление называется терминальной дифференцировкой и присуще преимущественно клеткам животных. В отличие от клеток животных, большинство клеток растений даже после дифференцировки способны переходить к делению и даже вступать на новый путь развития. Такой процесс называется дедифференцировкой. Например, при надрезе стебля некоторые клетки в зоне разреза начинают делиться и закрывают рану, другие вообще могут подвергаться дедифференцировке. Так клетки коры могут превратиться в клетки ксилемы и восстановить непрерывность сосудов в области повреждения. В экспериментальных условиях при культивировании растительной ткани в соответствующей питательной среде клетки образуют каллус.. При соответствующих условиях из одиночных клеток каллуса можно вырастить новые растения. При дифференцировки не происходит потерь или перестройки ДНК. Об этом убедительно свидетельствуют результаты экспериментов по пересадке ядер из дифференцированных клеток в недифференцированные. Так ядро из дифференцированной клетки вводили в энуклеированную яйцеклетку лягушки. В результате из такой клетки развивался нормальный головастик. Дифференцировка в основном происходит в эмбриональный период, а также на первых стадиях постэмбрионального развития. Кроме того, дифференцировка имеет место в некоторых органах взрослого организма. Например, в кроветворных органах стволовые клетки дифференцируются в различные клетки крови, а в гонадах – первичные половые клетки – в гаметы.

Факторы и регуляция дифференциации. На первых этапах онтогенеза развитие организма происходит под контролем РНК и других компонентов, находящихся в цитоплазме яйцеклетки. Затем на развитие начинают оказывать влияние факторы дифференцировки.

Выделяют два основных фактора дифференцировки:

1. Различия цитоплазмы ранних эмбриональных клеток, обусловленные неоднородностью цитоплазмы яйца.

2. Специфические влияния соседних клеток (индукция).

Роль факторов дифференцировки заключается в избирательной активации или инактивации тех или иных генов в различных клетках. Активность определенных генов приводит к синтезу соответствующих белков, направляющих дифференциацию. Синтезируемые белки могут блокировать или, напротив, активировать транскрипцию. Первоначально активация или инактивация разных генов зависит от взаимодействия тотипотентных ядер клеток со своей специфической цитоплазмой. Возникновение локальных различий в свойствах цитоплазмы клеток называется ооплазматической сегрегацией. Причина этого явления заключается в том, что в процессе дробления яйцеклетки участки цитоплазмы, различающиеся по своим свойствам, попадают в разные бластомеры. Наряду с внутриклеточной регуляцией дифференцировки с определенного момента включается надклеточный уровень регуляции. К надклеточному уровню регуляции относится эмбриональная индукция.

46. Стволовые клетки. Тотипотентные, плюрипотентные, унипотентные, полипотентные.

Стволовая клетка— недифференцированная клетка, способная к самообновлению и дифференцировке в различные специализированные клетки. Принято разделять стволовые клетки на эмбриональные стволовые клетки (выделяют из эмбрионов на стадии бластоцисты — ранней стадии развития, когда еще нет ни тканей, ни закладок органов) и региональные стволовые клетки (выделяют из органов взрослых особей или из органов эмбрионов более поздних стадий), которые сохраняют свойства эмбриональных клеток. Термин «Стволовые клетки.» был введен в биологию А. Максимовым в 1908 г.

Существует иерархия стволовых клеток.

Тотипотентные стволовые клетки могут далее давать в процессе последовательных превращений все множество типов клеток организма. Такими клетками являются эмбриональные стволовые клетки.

Плюрипотентные стволовые клетки характерижуются способностью давать множество разных типов дифференцированных клеток в определенном типе ткани. К таким клеткам относятся клетки костного мозга, из которых образуются все зрелые клетки крови. Иногда стволовые клетки - родоначальники всех клеток определенной ткани также называют тотипотентными.

Унипотентные стволовые клетки способны образовывать только один тип дифференцированных клеток. В отличие от истинно тотипотентных клеток плюрипотентные и унипотентные клетки детерминированы. Это означает что они могут давать только строго определенные типы конечных дифференцированных клеток. Стволовые клетки теоретически способны к неограниченному делению. При делении стволовых клеток часть из дочерних клеток остается стволовыми, другая начинает процесс дифференцировки.

О стволовых клетках говорят, что они полипотентны. Полипотентные стволовые клетки присутствуют не только у эмбриона, но и в организме новорожденного и взрослого человека. Так, гемопоэтические стволовые клетки, находящиеся в основном в костном мозге, а также в небольшом количестве циркулирующие в крови, ответственны за постоянное образование новых клеток крови взамен разрушенных, и этот процесс продолжается всю жизнь.

Строение сперматозоида

Почти вся головка заполнена ядром, которое несет наследственный материал в виде хроматина. На переднем конце головки (на ее вершине) располагается акросома, которая представляет собой видоизмененный комплекс Гольджи. Здесь происходит образование гиалуронидазы — фермента, который способен расщеплять мукополисахариды оболочек яйцеклетки, что делает возможным проникновение сперматозоида внутрь яйцеклетки. В шейке сперматозоида расположена митохондрия, которая имеет спиральное строение. Она необходима для выработки энергии, которая тратится на активные движения сперматозоида по направлению к яйцеклетке. Большую часть энергии сперматозоид получает в виде фруктозы, которой очень богат эякулят. На границе головки и шейки располагается центриоль. На поперечном срезе жгутика видны 9 пар микротрубочек, еще 2 пары есть в центре. Жгутик является органоидом активного движения.

Сперматозоиды некоторых видов животных имеют акросомный аппарат, который выбрасывает длинную и тонкую нить для захвата яйцеклетки.

Установлено, что оболочка сперматозоида имеет специфические рецепторы, которые узнают химические вещества, выделяемые яйцеклеткой. Поэтому сперматозоиды человека способны к направленному движению по направлению к яйцеклетке (это называется положительным хемотаксисом).

Отличия Мейоза от Митоза

Митоз и мейоз – два вида процесса деления клеток. Они имеют одинаковые фазы деления, но сами эти процессы и их результаты существенно различаются.

Митоз – универсальный способ непрямого деления клеток с ядром. Таким способом делятся клетки растений, животных, грибов. Также его называют клонированием или вегетативным способом размножения.

При митозе в процессе деления каждая хромосома делится на две, распределяясь по двум новым клеткам. Образуются две соматические диплоидные клетки. В ходе этого деления наследственные факторы не меняются. Эти клетки могут продолжить деление, но это не обязательно. Одна из них или обе могут утратить способность делиться. Клетки, получившиеся после деления, практически идентичны материнской клетке. У них такая же структура.

Митоз – единственный способ самовосстановления соматических клеток (клеток тела) и основа их бесполого размножения. Этот вид деления клеток лежит в основе индивидуального развития и роста любых многоклеточных организмов. При нем в ходе продольного расщепления происходит удвоение хромосом, которые равномерно распределяются по вновь образованным клеткам. При этом качество и объем исходной информации сохраняется в полной мере и не меняется.

Любые виды спаривания при митозе отсутствуют. Удвоенные хромосомы выстраиваются раздельно по экватору.В отличие от митоза, при мейозе процесс деления состоит из двух этапов. На первом этапе число хромосом уменьшается в два раза. Из одной диплоидной клетки в результате деления получаются две гаплоидные клетки. В каждой хромосоме при этом содержится по две хроматиды. Также происходит слияние гомологичных хромосом. Одна клетка словно делится на две свои половинки. Во втором делении образуются четыре клетки. В них число хромосом не уменьшается, и каждая хромосома содержит по одной хроматиде. Удвоенные хромосомы выстраиваются парами.

В результате мейоза появляются четыре половые гаплоидные клетки с измененной наследственностью. То есть наследственная информация перемешивается.

Мейоз является основой полового размножения, поскольку он происходит в созревающих половых клетках (у растений в спорах). Постоянное число хромосом поддерживается, и появляются новые соединения наследственных задатков в хромосомах

Репликация ДНК.

Реплика́ция — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15—20 различных белков, называемый реплисомой.

К моменту деления ДНК должна быть реплицирована полностью и только один раз. Репликация проходит в три этапа:1.Инициация репликации (ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. В определённом сайте (точка начала репликации) происходит локальная денатурация ДНК, цепи расходятся и образуются две репликативные вилки, движущиеся в противоположных направлениях.).2.Элонгация (этап биосинтеза молекул нуклеиновых кислот, заключающийся в последовательном присоединении мономеров (нуклеотидов) к растущей цепи ДНК).3.Терминация репликации (завершающий этап, происходит в тот момент, когда между фрагментами Оказаки происходит заполнение пустых участков нуклеотидами).

Классификация генов

По месту локализации генов в структурах клетки различают расположенные в хромосомах ядра, ядерные гены и цитоплазматические гены, локализация которых связана с хлоропластами и митохондриями.

По функциональному значению различают:структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены - последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.).

По влиянию на физиологические процессы в клетке различают: летальные, условно летальные, супервитальные гены, гены-мутаторы, гены-антимутаторы и др.

Следует отметить, что любые биохимические и биологические процессы в организме находятся под генным контролем. Так, деление клеток (митоз, мейоз) контролируется несколькими десятками генов; группы генов осуществляют контроль восстановления генетических повреждений ДНК (репарация). Онкогены и гены - супрессоры опухолей участвуют в процессах нормального деления клеток. Индивидуальное развитие организма (онтогенез) контролируется многими сотнями генов. Мутации в генах приводят к измененному синтезу белковых продуктов и нарушению биохимических или физиологических процессов.

Гомеозисные мутации у дрозофилы позволили открыть существование генов, нормальной функцией которых является выбор или поддержание определенного пути эмбрионального развития, по которому следуют клетки. Каждый путь развития характеризуется экспрессией определенного набора генов, действие которых приводит к появлению конечного результата: глаза, голова грудь, брюшко, крыло, ноги и т. д. Исследования генов комплекса bithorax дрозофилы американским генетиком Льюисом показали, что это гигантский кластер тесно сцепленных генов, функция которых необходима для нормальной сегментации груди (thorax) и брюшка (abdomen). Подобные гены получили название гомеобоксных. Гомеобоксные гены расположены в ДНК группами и проявляют свое действие строго последовательно. Такие гены обнаружены и у млекопитающих, и они имеют высокую гомологию (сходство).

Транскрипция у эукариот

Транскри́пция- процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5'- к 3'- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3'->5'.

Транскрипция состоит из стадий инициации, элонгации и терминации. Единицей транскрипции является транскриптон, фрагмент молекулы ДНК, состоящий из промотора, транскрибируемой части и терминатора.

Инициация. Активация промотора происходит с помощью большого белка - ТАТА-фактора, называемого так потому, что он взаимодействует со специфической последовательностью нуклеотидов промотора - ТАТААА- (ТАТА-бокс) (рис. 4-29).

Присоединение ТАТА-фактора облегчает взаимодействие промотора с РНК-полимеразой. Факторы инициации вызывают изменение кон-формации РНК-полимеразы и обеспечивают раскручивание примерно одного витка спирали ДНК, т.е. образуется транскрипционная вилка, в которой матрица доступна для инициации синтеза цепи РНК.

После того как синтезирован олигонуклеотид из 8-10 нуклеотидных остатков, σ-субъединица отделяется от РНК-полимеразы, а вместо неё к молекуле фермента присоединяются несколько факторов элонгации.

Элонгация. Факторы элонгации повышают активность РНК-полимеразы и облегчают расхождение цепей ДНК. Синтез молекулы РНК идёт от 5'- к З'-концу комплементарно матричной цепи ДНК. На стадии элонгации, в области транскрипционной

вилки, одновременно разделены примерно 18 нуклеотидных пар ДНК. Растущий конец цепи РНК образует временную гибридную спираль, около 12 пар нуклеотидных остатков, с матричной цепью ДНК. По мере продвижения РНК-полимеразы по матрице в направлении от 3'- к 5'-концу впереди неё происходит расхождение, а позади - восстановление двойной спирали ДНК.

Терминация. Раскручивание двойной спирали ДНК в области сайта терминации делает его доступным для фактора терминации. Завершается синтез РНК в строго определенных участках матрицы - терминаторах (сайты терминации). Фактор терминации облегчает отделение первичного транскрипта (пре-мРНК), комплементарного матрице, и РНК-полимеразы от матрицы. РНК-полимераза может вступить в следующий цикл транскрипции после присоединения субъединицы σ.

68. Реализация генетической информации.

Результатом экспрессии генов, кодирующих белки или нуклеиновые кислоты, должно быть образование полноценных в функциональном отношении макромолекул, сопровождаемое формированием определенного фенотипа организма. В соответствии с основным постулатом молекулярной биологии генетическая информация передается однонаправленно от нуклеиновых кислот к белкам по схеме: ДНК <-> РНК -> белок, т.е. в ряде случаев возможна передача генетической информации от РНК к ДНК с использованием механизма обратной транскрипции. Не обнаружена передача генетической информации от белков к нуклеиновым кислотам.

На первом этапе экспрессии генов происходит переписывание генетической информации на матричные (информационные) РНК (мРНК - messenger RNA, mRNA), которые являются местом промежуточного хранения информации. В некоторых случаях сами РНК являются конечным результатом экспрессии генов, и после ряда ферментативных модификаций они непосредственно используются в клеточных процессах. Это относится, прежде всего, к рибосомным и транспортным РНК (рРНК и тРНК). К таким РНК принадлежат и малые ядерные РНК (мяРНК), участвующие в процессинге предшественников мРНК эукариот, РНК, входящие в состав ферментов, и природные антисмысловые РНК.

Синтез РНК происходит в результате сложной последовательности биохимических реакций, называемой транскрипцией. На втором этапе реализации генетической информации, называемом трансляцией, последовательность нуклеотидов мРНК определяет последовательность аминокислотных остатков синтезируемых белков.

Таким образом, экспрессию генов определяют два глобальных молекулярно-генетических механизма: транскрипция генов и трансляция синтезированных мРНК рибосомами, которая завершается образованием полипептидных цепей, кодируемых генами. Однако процесс экспрессии генов не ограничивается их транскрипцией и трансляцией.

Существенными моментами экспрессии генов являются посттранскрипционные и посттрансляционные модификации мРНК и белков, которые включают процессинг их предшественников (удаление избыточных последовательностей и другие ковалентные модификации последовательностей РНК и белков). Посттранскрипционные модификации предшественников мРНК обеспечивают подготовку мРНК к трансляции рибосомами и определяют продолжительность ее существования в цитоплазме. Посттрансляционные модификации белков необходимы для их полноценного функционирования.

Механизм созревания мРНК

Жизненный цикл молекулы мРНК начинается её «считыванием» с матрицы ДНК (транскрипция) и завершается её деградацией до отдельных нуклеотидов. Молекула мРНК в течение своей жизни может подвергаются различным модификациям перед синтезом белка (трансляцией). Эукариотические молекулы мРНК часто требуют сложной обработки и транспортировки из ядра — места синтеза мРНК, на рибосомы, где происходит трансляция, в то время как прокариотические молекулы мРНК этого не требуют и синтез РНК у них сопряжён с синтезом белка.

Транскрипция осуществляется ферментом РНК-полимеразой, строящей, согласно принципу комплементарности, копию участка ДНК на основании одной из цепей двойной спирали. Этот процесс как у эукариот, так и у прокариот организован одинаково. Основное различие между про- и эукариотами состоит в том, что у эукариот РНК-полимераза во время транскрипции ассоциируется с мРНК-обрабатывающими ферментами, поэтому у них обработка мРНК и транскрипция могут проходить одновременно. Короткоживущие необработанные или частично обработанные продукты транскрипции называются пре-мРНК; после полной обработки — зрелая мРНК.

Созревание мРНК. Эукариотические пре-мРНК подвергаются интенсивным модификациям. Так, одновременно с транскрипцией происходит добавление на 5'-конец молекулы РНК специального модифицированного нуклеотида (кэпа), удаление определённых участков РНК (сплайсинг), а также добавление на 3'-конец адениновых нуклеотидов (так называемый полиадениновый, или поли(А)-, хвост). Обычно эти посттранскрипционные изменения мРНК эукариот обозначают термином «процессинг мРНК».

Кэпирование является первым этапом процессинга мРНК. Оно осуществляется, когда синтезируемый транскрипт достигает длины 25—30 нуклеотидов. Сразу после присоединения кэпа к 5'-концу транскрипта с ним связывается кэп-связывающий комплекс CBC (англ. cap binding complex), который остаётся связанным с мРНК до завершения процессинга и важен для всех последующих его этапов. В процессе сплайсинга из пре-мРНК удаляются не кодирующие белок последовательности — интроны. Полиаденилирование необходимо для транспорта большинства мРНК в цитоплазму и защищает молекулы мРНК от быстрой деградации (увеличивает время их полужизни). Лишённые поли(А)-участка молекулы мРНК (например, вирусные) быстро разрушаются в цитоплазме клеток эукариот рибонуклеазами.

После завершения всех стадий процессинга мРНК проходит проверку на отсутствие преждевременных стоп-кодонов, после чего она становится полноценной матрицей для трансляции. В цитоплазме кэп узнаётся факторами инициации, белками, отвечающими за присоединение к мРНК рибосомы, полиадениновый хвост связывается со специальным поли(А)-связывающим белком PABP1.

Далее происходит процесс тра







Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.